Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI

医学 侧隐窝 矢状面 放射科 金标准(测试) 磁共振成像 神经放射学家 腰椎 核医学
作者
James Thomas Patrick Decourcy Hallinan,Lei Zhu,Kaiyuan Yang,Andrew Makmur,Diyaa Abdul Rauf Algazwi,Yee Liang Thian,Samuel Lau,Yun Song Choo,Sterling Ellis Eide,Qai Ven Yap,Yiong Huak Chan,Jiong Hao Tan,Naresh Kumar,Beng Chin Ooi,Hiroshi Yoshioka,Swee Tian Quek
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (1): 130-138 被引量:116
标识
DOI:10.1148/radiol.2021204289
摘要

Background Assessment of lumbar spinal stenosis at MRI is repetitive and time consuming. Deep learning (DL) could improve ­productivity and the consistency of reporting. Purpose To develop a DL model for automated detection and classification of lumbar central canal, lateral recess, and neural ­foraminal stenosis. Materials and Methods In this retrospective study, lumbar spine MRI scans obtained from September 2015 to September 2018 were included. Studies of patients with spinal instrumentation or studies with suboptimal image quality, as well as postgadolinium studies and studies of patients with scoliosis, were excluded. Axial T2-weighted and sagittal T1-weighted images were used. Studies were split into an internal training set (80%), validation set (9%), and test set (11%). Training data were labeled by four radiologists using predefined gradings (normal, mild, moderate, and severe). A two-component DL model was developed. First, a convolutional neural network (CNN) was trained to detect the region of interest (ROI), with a second CNN for classification. An internal test set was labeled by a musculoskeletal radiologist with 31 years of experience (reference standard) and two subspecialist radiologists (radiologist 1: A.M., 5 years of experience; radiologist 2: J.T.P.D.H., 9 years of experience). DL model performance on an external test set was evaluated. Detection recall (in percentage), interrater agreement (Gwet κ), sensitivity, and specificity were calculated. Results Overall, 446 MRI lumbar spine studies were analyzed (446 patients; mean age ± standard deviation, 52 years ± 19; 240 women), with 396 patients in the training (80%) and validation (9%) sets and 50 (11%) in the internal test set. For internal testing, DL model and radiologist central canal recall were greater than 99%, with reduced neural foramina recall for the DL model (84.5%) and radiologist 1 (83.9%) compared with radiologist 2 (97.1%) (P < .001). For internal testing, dichotomous classification (normal or mild vs moderate or severe) showed almost-perfect agreement for both radiologists and the DL model, with respective κ values of 0.98, 0.98, and 0.96 for the central canal; 0.92, 0.95, and 0.92 for lateral recesses; and 0.94, 0.95, and 0.89 for neural foramina (P < .001). External testing with 100 MRI scans of lumbar spines showed almost perfect agreement for the DL model for dichotomous classification of all ROIs (κ, 0.95–0.96; P < .001). Conclusion A deep learning model showed comparable agreement with subspecialist radiologists for detection and classification of central canal and lateral recess stenosis, with slightly lower agreement for neural foraminal stenosis at lumbar spine MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1177发布了新的文献求助10
2秒前
烟花应助always采纳,获得10
2秒前
科研通AI5应助hahhh7采纳,获得10
3秒前
乔心发布了新的文献求助10
5秒前
可爱的函函应助93采纳,获得10
6秒前
深情安青应助杨冰采纳,获得10
6秒前
王小姐不吃药完成签到 ,获得积分10
6秒前
iwhsgfes发布了新的文献求助10
7秒前
7秒前
干焱完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
11秒前
粥粥发布了新的文献求助10
12秒前
12秒前
cc2713206完成签到,获得积分0
14秒前
我是老大应助muyun采纳,获得10
18秒前
Ava应助fanyy采纳,获得10
18秒前
byr完成签到,获得积分10
18秒前
DrN完成签到 ,获得积分10
19秒前
曲聋五完成签到 ,获得积分10
20秒前
20秒前
Herman_Chen完成签到,获得积分10
21秒前
今后应助生动谷南采纳,获得10
21秒前
Tsuzuri完成签到,获得积分10
22秒前
niceweiwei发布了新的文献求助10
22秒前
22秒前
25秒前
26秒前
dabing发布了新的文献求助10
27秒前
乐观小之发布了新的文献求助10
27秒前
小二郎应助默默的尔丝采纳,获得10
29秒前
粥粥关注了科研通微信公众号
31秒前
31秒前
93发布了新的文献求助10
31秒前
科研通AI5应助dabing采纳,获得10
31秒前
顾矜应助乔心采纳,获得10
32秒前
桐桐应助满眼星辰采纳,获得10
32秒前
英姑应助meng采纳,获得10
35秒前
七个完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648