From motor control to team play in simulated humanoid football

足球 计算机科学 具身认知 背景(考古学) 强化学习 仿人机器人 控制(管理) 人机交互 运动捕捉 运动技能 电动机控制 人工智能 运动(物理) 机器人 心理学 古生物学 精神科 神经科学 政治学 法学 生物
作者
Siqi Liu,Guy Lever,Zhe Wang,Josh Merel,S. M. Ali Eslami,Daniel Hennes,Wojciech Marian Czarnecki,Yuval Tassa,Shayegan Omidshafiei,Abbas Abdolmaleki,Noah Siegel,Leonard Hasenclever,Luke Marris,Saran Tunyasuvunakool,Hai-Jing Song,Markus Wulfmeier,Paul Müller,Tuomas Haarnoja,Brendan Tracey,Karl Tuyls,Thore Graepel,Nicolas Heess
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:7 (69) 被引量:43
标识
DOI:10.1126/scirobotics.abo0235
摘要

Learning to combine control at the level of joint torques with longer-term goal-directed behavior is a long-standing challenge for physically embodied artificial agents. Intelligent behavior in the physical world unfolds across multiple spatial and temporal scales: Although movements are ultimately executed at the level of instantaneous muscle tensions or joint torques, they must be selected to serve goals that are defined on much longer time scales and that often involve complex interactions with the environment and other agents. Recent research has demonstrated the potential of learning-based approaches applied to the respective problems of complex movement, long-term planning, and multiagent coordination. However, their integration traditionally required the design and optimization of independent subsystems and remains challenging. In this work, we tackled the integration of motor control and long-horizon decision-making in the context of simulated humanoid football, which requires agile motor control and multiagent coordination. We optimized teams of agents to play simulated football via reinforcement learning, constraining the solution space to that of plausible movements learned using human motion capture data. They were trained to maximize several environment rewards and to imitate pretrained football-specific skills if doing so led to improved performance. The result is a team of coordinated humanoid football players that exhibit complex behavior at different scales, quantified by a range of analysis and statistics, including those used in real-world sport analytics. Our work constitutes a complete demonstration of learned integrated decision-making at multiple scales in a multiagent setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐熙发布了新的文献求助10
3秒前
丢丢完成签到,获得积分10
3秒前
3秒前
4秒前
研友_VZG7GZ应助yabocai采纳,获得10
5秒前
7秒前
无语的安白应助郭璠采纳,获得10
7秒前
钟ZJ完成签到,获得积分10
7秒前
8秒前
storage发布了新的文献求助10
9秒前
轻风完成签到,获得积分10
10秒前
10秒前
Wxx发布了新的文献求助30
11秒前
学术渣渣发布了新的文献求助10
12秒前
13秒前
现代的芹完成签到 ,获得积分10
14秒前
小Q完成签到 ,获得积分20
14秒前
独家双层汉堡完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
郭璠完成签到,获得积分10
18秒前
19秒前
Zhi_S完成签到,获得积分20
20秒前
情木花肆发布了新的文献求助10
21秒前
zj完成签到,获得积分10
21秒前
呱呱完成签到,获得积分10
22秒前
22秒前
木子李发布了新的文献求助10
22秒前
随心发布了新的文献求助10
23秒前
852应助周em12_采纳,获得10
23秒前
牛铁锤发布了新的文献求助10
24秒前
jjy完成签到 ,获得积分10
24秒前
脚踏实滴完成签到 ,获得积分10
26秒前
27秒前
27秒前
我要睡觉w发布了新的文献求助30
27秒前
对方正在看文献完成签到,获得积分10
27秒前
桐桐应助Wxx采纳,获得10
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846501
求助须知:如何正确求助?哪些是违规求助? 3388981
关于积分的说明 10555297
捐赠科研通 3109436
什么是DOI,文献DOI怎么找? 1713719
邀请新用户注册赠送积分活动 824868
科研通“疑难数据库(出版商)”最低求助积分说明 775101