A privacy-preserving multi-agent updating framework for self-adaptive tree model

计算机科学 上传 适应(眼睛) 树(集合论) 差别隐私 可解释性 数据挖掘 机器学习 人工智能
作者
Qingyang Li,Bin Guo,Zhu Wang
出处
期刊:Peer-to-peer Networking and Applications [Springer Nature]
标识
DOI:10.1007/s12083-021-01256-6
摘要

The tree-based model is widely applied in classification and regression problems because of its interpretability. Self-adaptive forest models are proposed for adapting to dynamic environments by using active learning and online learning techniques. However, most existing self-adaptive forest models are designed under a single-agent situation. With the development of the IoT, data is distributed across multiple edge devices without geographic restrictions. A global model is trained by distributed data across multiple devices. Therefore, extending a single-agent self-adaptive forest model to a multi-agent one is useful to make the original tree-based models glow with new vitality. In a multi-agent system, the privacy-preserving problem should be addressed when sharing knowledge between agents. In this paper, we propose PMSF, a privacy-preserving multi-agent self-adaptive forest framework via federated learning. We utilize differential privacy to prevent attackers from getting the data statistics. No private data is uploaded into the server in our framework and only updated parameters are uploaded. Finally, We design local adaptation and global update procedures to ensure the ability of self-adaptation of the forest model and the ability of privacy protection in each agent, which can further improve the performance of self-adaptive forest models. To demonstrate the superiority and effectiveness of our framework, we conduct extensive experiments in an identity authentication case with two datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dvd发布了新的文献求助10
1秒前
大力浩轩发布了新的文献求助10
1秒前
十七发布了新的文献求助10
1秒前
1秒前
Sponge发布了新的文献求助10
1秒前
1秒前
2秒前
贲孱完成签到,获得积分10
2秒前
畅快的草莓完成签到,获得积分10
2秒前
充电宝应助Ouyang采纳,获得10
2秒前
2秒前
3秒前
3秒前
YUYI发布了新的文献求助10
3秒前
所爱皆在完成签到 ,获得积分10
3秒前
学白柒完成签到,获得积分10
3秒前
yu完成签到 ,获得积分10
3秒前
3秒前
3秒前
www完成签到,获得积分10
4秒前
斑马发布了新的文献求助10
4秒前
Mannose完成签到,获得积分10
4秒前
落花生完成签到,获得积分10
4秒前
ayayaya完成签到 ,获得积分10
4秒前
4秒前
5秒前
jjj完成签到,获得积分10
5秒前
石慧君完成签到 ,获得积分10
5秒前
gyf发布了新的文献求助10
6秒前
昏睡的眼神完成签到 ,获得积分0
6秒前
干净的西装完成签到,获得积分10
7秒前
夏侯觅风完成签到,获得积分10
7秒前
一切顺利完成签到,获得积分10
7秒前
犹豫的铸海完成签到,获得积分10
7秒前
fddd完成签到,获得积分10
8秒前
ZCM完成签到,获得积分10
8秒前
kdh510发布了新的文献求助10
9秒前
科研通AI6应助wnx001111采纳,获得10
10秒前
勤恳的越泽完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415