亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation

过度拟合 合成数据 计算机科学 水准点(测量) 人工智能 生成模型 机器学习 数据共享 图像合成 医学影像学 骨料(复合) 数据挖掘 图像(数学) 模式识别(心理学) 数据科学 生成语法 人工神经网络 医学 复合材料 病理 材料科学 替代医学 地理 大地测量学
作者
August DuMont Schütte,Jürgen Hetzel,Sergios Gatidis,Tobias Hepp,Benedikt Dietz,Stefan Bauer,Patrick Schwab
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:25
标识
DOI:10.1038/s41746-021-00507-3
摘要

Abstract Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhlz5879完成签到 ,获得积分10
1秒前
13秒前
kw98完成签到 ,获得积分10
21秒前
Hello应助骆十八采纳,获得10
33秒前
yangjoy发布了新的文献求助10
49秒前
djbj2022发布了新的文献求助10
59秒前
bkagyin应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助liam采纳,获得30
1分钟前
1分钟前
骆十八发布了新的文献求助10
1分钟前
务实的菓完成签到 ,获得积分10
1分钟前
骆十八完成签到,获得积分10
1分钟前
Vito完成签到 ,获得积分10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
专炸油条完成签到 ,获得积分10
2分钟前
djbj2022发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
liam发布了新的文献求助30
2分钟前
LY_Qin完成签到,获得积分10
2分钟前
罗英完成签到,获得积分10
2分钟前
斯寜应助科研通管家采纳,获得10
3分钟前
良良丸完成签到 ,获得积分10
3分钟前
Jasper应助怂怂鼠采纳,获得10
3分钟前
雪白砖家完成签到,获得积分10
3分钟前
光亮含海发布了新的文献求助10
3分钟前
liam发布了新的文献求助30
3分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
liam发布了新的文献求助30
4分钟前
4分钟前
怂怂鼠发布了新的文献求助10
4分钟前
4分钟前
4分钟前
echo完成签到,获得积分10
4分钟前
光亮含海发布了新的文献求助10
4分钟前
echo发布了新的文献求助10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837300
求助须知:如何正确求助?哪些是违规求助? 3379531
关于积分的说明 10509736
捐赠科研通 3099163
什么是DOI,文献DOI怎么找? 1706958
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552