计算机科学
里程计
惯性测量装置
计算机视觉
视觉里程计
人工智能
全球定位系统
单眼
单目视觉
实时计算
机器人
移动机器人
电信
作者
Nan Jiang,De-Bin Huang,Jing Chen,Jie Wen,Heng Zhang,Honglong Chen
摘要
The precise measuring of vehicle location has been a critical task in enhancing the autonomous driving in terms of intelligent decision making and safe transportation. Internet of Vehicles ( IoV ) is an important infrastructure in support of autonomous driving, allowing real-time road information exchanging and sharing for localizing vehicles. Global positioning System ( GPS ) is widely used in the traditional IoV system. GPS is unable to meet the key application requirements of autonomous driving due to meter level error and signal deterioration. In this article, we propose a novel solution, named Semi-Direct Monocular Visual-Inertial Odometry using Point and Line Features ( SDMPL-VIO ) for precise vehicle localization. Our SDMPL-VIO model takes advantage of a low-cost Inertial Measurement Unit ( IMU ) and monocular camera, using them as the sensor to acquire the surrounding environmental information. Visual-Inertial Odometry ( VIO ), taking into account both point and line features, is proposed, which is able to deal with both weak texture and dynamic environment. We use a semi-direct method to deal with keyframes and non-keyframes, respectively. Dual sliding window mechanisms can effectively fuse point-line and IMU information. To evaluate our SDMPL-VIO system model, we conduct extensive experiments on both an indoor dataset (i.e., EuRoC) and an outdoor dataset (i.e., KITTI) from the real-world applications, respectively. The experimental results show that the accuracy of SDMPL-VIO proposed by us is better than the mainstream VIO system at present. Especially in the weak texture of the datasets, fast-moving datasets, and other challenging datasets, SDMPL-VIO has a relatively high robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI