The Best of Both Worlds: Forecasting US Equity Market Returns Using a Hybrid Machine Learning–Time Series Approach

计量经济学 计算机科学 衡平法 自回归模型 库存(枪支) 股票市场 时间序列 经济 机器学习 工程类 机械工程 古生物学 政治学 法学 生物
作者
Haifeng Wang,Harshdeep Ahluwalia,Roger Aliaga‐Díaz,Joseph H. Davis
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:3 (2): 9-20
标识
DOI:10.3905/jfds.2021.3.2.009
摘要

Predicting long-term equity market returns is of great importance for investors to strategically allocate their assets. The authors explore machine learning (ML) methods to forecast 10-year-ahead US stock returns and compare the results with the traditional Shiller regression-based forecasts more commonly used in the asset-management industry. The authors find that ML techniques can only modestly improve the forecast accuracy of a traditional Shiller cyclically adjusted price-to-earnings ratio model, and they actually result in worse performance than the vector autoregressive model (VAR)–based two-step approach. The authors then implement this approach with ML techniques and allow for unspecified nonlinear relationships (a hybrid ML-VAR approach). They find about 50% improvement in real-time forecast accuracy for 10-year annualized US stock returns. TOPICS:Security analysis and valuation, big data/machine learning, quantitative methods, statistical methods, performance measurement Key Findings ▪ Applying machine learning (ML) techniques within a robust economic framework such as Davis et al.’s (2018) two-step approach is superior than applying such techniques in isolation (directly forecasting equity returns). ▪ Using the two-step approach, integrating ML with the vector autoregressive model (ML-VAR) to dynamically forecast earning yields reduces dramatically out-of-sample forecast errors, yielding an improvement of about 50% in forecast accuracy for long-horizon U.S. stock market returns. ▪ Among the ML algorithms tested, the ensemble method, which averages all other model forecasts, consistently provides improved predictive power.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ww完成签到,获得积分10
刚刚
orixero应助阿卫采纳,获得10
刚刚
zxj发布了新的文献求助10
刚刚
liuqi完成签到,获得积分10
刚刚
烂漫臻完成签到,获得积分10
1秒前
orixero应助jio大洁采纳,获得10
1秒前
梨理栗完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
杜一完成签到,获得积分20
1秒前
1秒前
李健的小迷弟应助夏夏采纳,获得10
2秒前
flyfish完成签到,获得积分10
3秒前
哩哩哩哩哩完成签到 ,获得积分10
4秒前
4秒前
HHHH完成签到,获得积分10
4秒前
阿白发布了新的文献求助10
5秒前
暮暮发布了新的文献求助10
5秒前
小马甲应助呆萌的正豪采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
11秒前
ALLIN完成签到,获得积分20
11秒前
泡沫完成签到 ,获得积分10
11秒前
12秒前
赘婿应助大胆的问夏采纳,获得10
12秒前
阿卫发布了新的文献求助10
13秒前
时来运转发布了新的文献求助10
13秒前
科研通AI5应助wxj采纳,获得10
13秒前
科研通AI5应助wxj采纳,获得10
13秒前
搜集达人应助可耐的乐荷采纳,获得10
13秒前
13秒前
玩命的鹤完成签到 ,获得积分10
14秒前
456发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831