Surface crack detection based on image stitching and transfer learning with pretrained convolutional neural network

图像拼接 卷积神经网络 学习迁移 人工智能 计算机科学 曲面(拓扑) 图像(数学) 人工神经网络 模式识别(心理学) 计算机视觉 深度学习 数学 几何学
作者
Lijun Wu,Xu Lin,Zhicong Chen,Peijie Lin,Shuying Cheng
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:28 (8) 被引量:35
标识
DOI:10.1002/stc.2766
摘要

During the operating lifecycle of civil structures, cracks will occur inevitably, which may pose great threat to the safety of the structures without timely maintenance. Digital image processing techniques have great potential in automatically detecting cracks, which can replace the labor-intensive and highly subjective traditional manual on-site inspections. Therefore, this paper presents a crack detection technology based on a convolutional neural network, GoogLeNet Inception V3. Firstly, a crack image dataset is acquired and constructed, which includes 2682 images with cracks and 983 images without crack at a resolution of 256 × 256 pixels. Then, based on a transfer learning method, the pretrained GoogLeNet Inception V3 model is retrained by the crack dataset for better identifying the crack images. The accuracy of the final trained model on the test set can reach 0.985. Moreover, image stitching based on Oriented FAST and Rotated BRIEF feature matching algorithm is realized, in order to overcome the limitation of camera field of view. Compared with the traditional image processing technology, the method adopted in this work can automatically study the characteristics of the object from the dataset, which can adapt to the complex real environment. Due to the transfer learning method, the crack detection can be achieved based on the existing well-trained models after being retrained by a small dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助小鱼采纳,获得10
1秒前
4秒前
Hello应助Hollen采纳,获得10
5秒前
科研通AI5应助学术渣渣采纳,获得10
6秒前
iijjj发布了新的文献求助10
6秒前
lihua应助科研通管家采纳,获得10
7秒前
hjyylab应助科研通管家采纳,获得10
7秒前
小粽子应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
hjyylab应助科研通管家采纳,获得10
8秒前
vvvvvv应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
顾矜应助meng采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
耍酷灵珊完成签到 ,获得积分10
10秒前
海盗完成签到,获得积分10
11秒前
12秒前
抚琴祛魅完成签到 ,获得积分10
12秒前
所所应助WFLLL采纳,获得10
13秒前
在水一方应助舒心的半仙采纳,获得10
14秒前
英姑应助zz采纳,获得10
14秒前
15秒前
研友_ZA9rqZ完成签到,获得积分10
15秒前
16秒前
16秒前
led完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845742
求助须知:如何正确求助?哪些是违规求助? 3388072
关于积分的说明 10551720
捐赠科研通 3108711
什么是DOI,文献DOI怎么找? 1713024
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774891