计算机科学
人工智能
失真(音乐)
计算机视觉
高动态范围成像
点扩散函数
高动态范围
图像复原
集合(抽象数据类型)
光学
航程(航空)
图像处理
图像(数学)
动态范围
计算机图形学(图像)
物理
电信
材料科学
带宽(计算)
复合材料
程序设计语言
放大器
作者
Keming Gao,Meng Chang,Kunjun Jiang,Yaxu Wang,Zhihai Xu,Huajun Feng,Qi Li,Zengxin Hu,YueTing Chen
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2021-10-25
卷期号:29 (23): 37820-37820
被引量:10
摘要
Under-display imaging technique was recently proposed to enlarge the screen-to-body ratio for full-screen devices. However, existing image restoration algorithms have difficulty generalizing to real-world under-display (UD) images, especially to images containing strong light sources. To address this issue, we propose a novel method for building a synthetic dataset (CalibPSF dataset) and introduce a two-stage neural network to solve the under-display imaging degradation problem. The CalibPSF dataset is generated using the calibrated high dynamic range point spread function (PSF) of the under-display optical system and contains various simulated light sources. The two-stage network solves the color distortion and diffraction degradation in order. We evaluate the performance of our algorithm on our captured real-world test set. Comprehensive experiments demonstrate the superiority of our method in different dynamic range scenes.
科研通智能强力驱动
Strongly Powered by AbleSci AI