Finite-Time Analysis of Decentralized Stochastic Approximation with Applications in Multi-Agent and Multi-Task Learning

强化学习 计算机科学 随机逼近 马尔可夫链 马尔可夫过程 操作员(生物学) 数学优化 迭代函数 随机过程 独立性(概率论) 趋同(经济学) 多智能体系统 人工智能 数学 机器学习 钥匙(锁) 数学分析 生物化学 统计 化学 计算机安全 抑制因子 转录因子 基因 经济 经济增长
作者
Sihan Zeng,Thinh T. Doan,Justin Romberg
标识
DOI:10.1109/cdc45484.2021.9683363
摘要

Stochastic approximation, a data-driven approach for finding the root of an unknown operator, provides a unified framework for solving many problems in stochastic optimization and reinforcement learning. Motivated by a growing interest in multi-agent and multi-task learning, we study a decentralized variant of stochastic approximation over a network of agents, where the goal is to find the root of the aggregate of the local operators at the agents. In this method, each agent implements a local stochastic approximation using noisy samples from its operator while averaging its iterates with the ones received from its neighbors. Our main contribution is to provide a finite-time analysis of the decentralized stochastic approximation method and to characterize the impacts of the underlying communication topology between agents. Our model for the data observed at each agent is that it is sampled from a Markov process; this lack of independence makes the iterates biased and (potentially) unbounded. Under mild assumptions we show that the convergence rate of the proposed method is essentially the same as if the samples were independent, differing only by a log factor that represents the mixing time of the Markov process. Finally, we present applications of the proposed method on a number of interesting learning problems in multi-agent systems, including distributed robust system identification and decentralized Q-learning for solving multitask reinforcement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的如风完成签到,获得积分10
刚刚
ALUCK完成签到,获得积分10
1秒前
2秒前
芒果味猕猴桃完成签到,获得积分10
3秒前
忐忑的草丛完成签到,获得积分10
3秒前
xiying完成签到 ,获得积分10
4秒前
思源应助淡定的如风采纳,获得10
4秒前
5秒前
热情的天晴应助安详夏彤采纳,获得10
6秒前
科研通AI5应助吕健采纳,获得10
7秒前
HGQ完成签到,获得积分10
7秒前
理论家发布了新的文献求助10
9秒前
gdh发布了新的文献求助10
9秒前
蛋蛋1完成签到,获得积分10
11秒前
13秒前
18秒前
19秒前
20秒前
Lucas应助福宝采纳,获得10
22秒前
ooo娜发布了新的文献求助10
24秒前
yyz发布了新的文献求助10
25秒前
翟zhai完成签到 ,获得积分20
27秒前
Owen应助blackcatcaptain采纳,获得10
27秒前
深情安青应助applelpypies采纳,获得10
30秒前
香蕉觅云应助理论家采纳,获得10
31秒前
yyyyy完成签到,获得积分10
31秒前
33秒前
orixero应助研友_851KE8采纳,获得10
35秒前
36秒前
37秒前
38秒前
nowfitness完成签到,获得积分10
38秒前
39秒前
huiwanfeifei发布了新的文献求助10
41秒前
CHL5722发布了新的文献求助10
42秒前
LUOYAN完成签到,获得积分20
44秒前
传奇3应助陈余航采纳,获得10
45秒前
漂亮的雨琴完成签到,获得积分10
46秒前
瘦瘦寻菡发布了新的文献求助10
47秒前
LUOYAN发布了新的文献求助30
48秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413