Grain boundary evolution during low-strain grain boundary engineering achieved by strain-induced boundary migration in pure copper

晶界 材料科学 再结晶(地质) 退火(玻璃) 电子背散射衍射 动态再结晶 冶金 晶界强化 复合材料 微观结构 地质学 热加工 古生物学
作者
Xinye Yang,Peng Wang,Ming Huang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:833: 142532-142532 被引量:41
标识
DOI:10.1016/j.msea.2021.142532
摘要

Grain boundary engineering (GBE) approaches involving small deformation and annealing to modify grain boundary networks have been widely used to improve grain boundary-related properties of polycrystalline materials. However, most GBE approaches are designed by trial-and-error method since the mechanism of GBE is unclear. An important issue still under debate is whether GBE is achieved by strain induced boundary migration (SIBM) or recrystallization. Also, the evolution of grain boundary structure during GBE process is unclear. a series of strains and annealing treatments covering SIBM and recrystallization were applied to pure copper in the current study. The result indicates that SIBM is more effective in the optimization of grain boundary character distribution compared with recrystallization. Then a quasi in-situ heating electron backscatter diffraction method was employed to the 10% compression/500 °C annealing copper to study the microstructural evolution during SIBM. SIBM was observed to be activated consecutively at high residual stress regions and then sweep into surrounding deformed areas until almost the whole material was covered by SIBM. The major procedure of SIBM involves the formation of numerous new Σ3 boundaries behind the migrating grain boundary front to enhance the fraction of special boundaries and the introduction of low energy segments to interrupt the connectivity of random high-angle boundary networks. A schematic model is proposed to understand the SIBM controlled GBE process. Our results provide the underlying insights needed to guide the design of GBE routes and parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘉嘉发布了新的文献求助10
3秒前
华仔应助顺心牛排采纳,获得10
4秒前
小天发布了新的文献求助10
9秒前
tonstark完成签到,获得积分10
11秒前
FashionBoy应助刘123采纳,获得10
14秒前
科目三应助黎小静采纳,获得10
15秒前
17秒前
bc应助科研通管家采纳,获得30
17秒前
bc应助科研通管家采纳,获得30
18秒前
冰魂应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
bc应助科研通管家采纳,获得30
18秒前
21秒前
WSH发布了新的文献求助10
21秒前
23秒前
23秒前
刘123发布了新的文献求助10
25秒前
26秒前
黎小静发布了新的文献求助10
26秒前
毛毛妈发布了新的文献求助10
29秒前
斯文败类应助爱听歌笑寒采纳,获得10
29秒前
SciGPT应助毛不二采纳,获得10
30秒前
wanci应助核桃nut采纳,获得10
33秒前
33秒前
bkagyin应助SCI采纳,获得10
38秒前
38秒前
hh完成签到 ,获得积分10
42秒前
43秒前
zho应助毛毛妈采纳,获得10
43秒前
45秒前
端庄的小翠完成签到 ,获得积分10
47秒前
SCI发布了新的文献求助10
48秒前
50秒前
54秒前
54秒前
小边发布了新的文献求助10
59秒前
1107任务报告完成签到,获得积分10
1分钟前
Charley发布了新的文献求助10
1分钟前
xingxinghan完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385