Grain boundary evolution during low-strain grain boundary engineering achieved by strain-induced boundary migration in pure copper

晶界 材料科学 再结晶(地质) 退火(玻璃) 电子背散射衍射 动态再结晶 冶金 晶界强化 复合材料 微观结构 地质学 热加工 古生物学
作者
Xinye Yang,Peng Wang,Ming Huang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:833: 142532-142532 被引量:57
标识
DOI:10.1016/j.msea.2021.142532
摘要

Grain boundary engineering (GBE) approaches involving small deformation and annealing to modify grain boundary networks have been widely used to improve grain boundary-related properties of polycrystalline materials. However, most GBE approaches are designed by trial-and-error method since the mechanism of GBE is unclear. An important issue still under debate is whether GBE is achieved by strain induced boundary migration (SIBM) or recrystallization. Also, the evolution of grain boundary structure during GBE process is unclear. a series of strains and annealing treatments covering SIBM and recrystallization were applied to pure copper in the current study. The result indicates that SIBM is more effective in the optimization of grain boundary character distribution compared with recrystallization. Then a quasi in-situ heating electron backscatter diffraction method was employed to the 10% compression/500 °C annealing copper to study the microstructural evolution during SIBM. SIBM was observed to be activated consecutively at high residual stress regions and then sweep into surrounding deformed areas until almost the whole material was covered by SIBM. The major procedure of SIBM involves the formation of numerous new Σ3 boundaries behind the migrating grain boundary front to enhance the fraction of special boundaries and the introduction of low energy segments to interrupt the connectivity of random high-angle boundary networks. A schematic model is proposed to understand the SIBM controlled GBE process. Our results provide the underlying insights needed to guide the design of GBE routes and parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助yeah采纳,获得10
1秒前
2秒前
2秒前
cheng完成签到,获得积分10
2秒前
3秒前
科研通AI6应助高玉峰采纳,获得10
3秒前
3秒前
4秒前
大灯泡发布了新的文献求助30
5秒前
迪歪歪应助缓慢的煎蛋采纳,获得10
5秒前
6秒前
上官若男应助无私的酸奶采纳,获得10
6秒前
6秒前
6秒前
7秒前
马晓玲发布了新的文献求助10
7秒前
晚星发布了新的文献求助10
7秒前
8秒前
8秒前
lxmccc发布了新的文献求助30
8秒前
shais发布了新的文献求助10
8秒前
AmosWong发布了新的文献求助10
8秒前
8秒前
8秒前
荒野风发布了新的文献求助10
8秒前
9秒前
kid发布了新的文献求助10
9秒前
洁净不评关注了科研通微信公众号
9秒前
汉堡包完成签到,获得积分10
10秒前
要减肥小小完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Wri发布了新的文献求助10
13秒前
受伤白安完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
Organum发布了新的文献求助10
14秒前
14秒前
高玉峰发布了新的文献求助50
14秒前
yeah发布了新的文献求助10
14秒前
evans完成签到,获得积分10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781