Object detection from UAV thermal infrared images and videos using YOLO models

人工智能 目标检测 计算机视觉 计算机科学 卷积神经网络 过程(计算) 对象(语法) 深度学习 遥感 模式识别(心理学) 地理 操作系统
作者
Chenchen Jiang,Huazhong Ren,Xin Ye,Jinshun Zhu,Hui Zeng,Nan Yang,Min Sun,Xiang Ren,Hongtao Huo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102912-102912 被引量:119
标识
DOI:10.1016/j.jag.2022.102912
摘要

Object detection is one of the most crucial tasks in computer vision and remote sensing to identify specific categories of various objects in images. The unmanned aerial vehicle (UAV)-based thermal infrared (TIR) remote sensing multi-scenario images and videos are two important data sources in public security. However, their object detection process is still challenging because of the complicated scene information, coarse resolution compared with the visible videos and lack of public labelled datasets and training models. This study proposed a UAV TIR object detection framework for images and videos. The You Only Look Once (YOLO) models based on Convolutional Neural Network (CNN) architecture were designed to extract features from ground-based TIR images and videos, which were captured by Forward-looking Infrared (FLIR) cameras. The most effective algorithm was finally identified by evaluation metrics and then applied to detect objects on TIR videos from UAVs. Results showed that the highest mean average precision (mAP) of the person and car instances was 88.69% in the validating task. The fastest detection speed achieved 50 frames per second (FPS), and the smallest model size was observed in YOLOv5-s. In the application, the cross-detection performance on persons and cars in UAV TIR videos under a YOLOv5-s model was discussed in terms of the different UAVs' observation angles and the effectiveness of the YOLO architecture was revealed. This study provides positive support for the qualitative and quantitative evaluation of objection detection from TIR images and videos using deep-learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
小小威廉发布了新的文献求助10
3秒前
王黎完成签到,获得积分10
3秒前
充电宝应助Bond采纳,获得10
6秒前
暖暖发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
酷炫的凤妖完成签到 ,获得积分10
8秒前
顺其自然发布了新的文献求助10
9秒前
9秒前
无私一德完成签到,获得积分20
10秒前
Chichien发布了新的文献求助10
11秒前
芸珂发布了新的文献求助10
12秒前
12秒前
LIJIngcan发布了新的文献求助10
13秒前
14秒前
venkash完成签到,获得积分10
16秒前
16秒前
excellent_shit完成签到,获得积分10
16秒前
科目三应助怕黑的凌柏采纳,获得10
17秒前
赵大宝完成签到,获得积分10
19秒前
venkash发布了新的文献求助10
19秒前
20秒前
20秒前
孙洪琼发布了新的文献求助10
21秒前
21秒前
千金小颖公主完成签到,获得积分20
22秒前
于清绝完成签到 ,获得积分10
22秒前
巴巴变完成签到,获得积分10
22秒前
23秒前
赵大宝发布了新的文献求助10
24秒前
Hiker发布了新的文献求助10
25秒前
26秒前
Junewang完成签到,获得积分20
26秒前
26秒前
花城完成签到,获得积分10
27秒前
天天快乐应助小赞采纳,获得10
28秒前
ZhouYW应助科研通管家采纳,获得10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150