Discovering signals of platform failure risks from customer sentiment: the case of online P2P lending

情绪分析 计算机科学 杠杆(统计) 预测能力 客户情报 光学(聚焦) 数据科学 人工智能 客户保留 业务 营销 服务(商务) 服务质量 哲学 物理 光学 认识论
作者
Qiang Zhang,Xinyu Zhu,J. Leon Zhao,Liang Liang
出处
期刊:Industrial Management and Data Systems [Emerald Publishing Limited]
卷期号:122 (3): 666-681 被引量:9
标识
DOI:10.1108/imds-05-2021-0308
摘要

Purpose Digital platforms have grown significantly in recent years. Although high platform failure risks (PFR) have plagued the industry, the literature has only given this issue scant treatment. Customer sentiments are crucial for platforms and have a growing body of knowledge on its analysis. However, previous studies have overlooked rich contextual information emb`edded in user-generated content (UGC). Confronting the research gap of digital platform failure and drawbacks of customer sentiment analysis, we aim to detect signals of PFR based on our advanced customer sentiment analysis approach for UGC and to illustrate how customer sentiments could predict PFR. Design/methodology/approach We develop a deep-learning based approach to improve the accuracy of customer sentiment analysis for further predicting PFR. We leverage a unique dataset of online P2P lending, i.e., a typical setting of transactional digital platforms, including 97,876 pieces of UGC for 2,467 platforms from 2011 to 2018. Findings Our results show that the proposed approach can improve the accuracy of measuring customer sentiment by integrating word embedding technique and bidirectional long short-term memory (Bi-LSTM). On top of that, we show that customer sentiment can improve the accuracy for predicting PFR by 10.96%. Additionally, we do not only focus on a single type of customer sentiment in a static view. We discuss how the predictive power varies across positive, neutral, negative customer sentiments, and during different time periods. Originality/value Our research results contribute to the literature stream on digital platform failure with online information processing and offer implications for digital platform risk management with advanced customer sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡榕完成签到,获得积分10
刚刚
忘川完成签到,获得积分10
刚刚
绕地球3圈完成签到,获得积分10
刚刚
苗条棒棒糖完成签到,获得积分10
2秒前
万能图书馆应助charles采纳,获得10
2秒前
Lynn怯霜静完成签到 ,获得积分10
2秒前
slim完成签到,获得积分10
2秒前
CARL发布了新的文献求助10
3秒前
3秒前
研友_P85D6Z发布了新的文献求助10
4秒前
执着的水杯完成签到,获得积分10
4秒前
852应助尔尔采纳,获得10
4秒前
5秒前
5秒前
6秒前
ZZZ完成签到,获得积分20
6秒前
星辰大海应助张益龙采纳,获得10
6秒前
负责凛完成签到,获得积分10
6秒前
yy完成签到,获得积分10
7秒前
CARL完成签到,获得积分10
8秒前
Grace完成签到,获得积分10
8秒前
LGZ发布了新的文献求助30
10秒前
10秒前
Y1sci完成签到,获得积分20
10秒前
11秒前
12秒前
12秒前
沉默的夏天完成签到,获得积分10
12秒前
天真彩虹完成签到 ,获得积分10
12秒前
Jasper应助JAYZHANG采纳,获得10
13秒前
向往完成签到,获得积分20
14秒前
14秒前
Y1sci发布了新的文献求助10
15秒前
不安溪灵完成签到,获得积分10
15秒前
呼呼发布了新的文献求助10
15秒前
16秒前
16秒前
jiaojiao完成签到 ,获得积分10
17秒前
ALDRC完成签到,获得积分10
17秒前
烟花应助liuliu采纳,获得10
18秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3880096
求助须知:如何正确求助?哪些是违规求助? 3422317
关于积分的说明 10728949
捐赠科研通 3147083
什么是DOI,文献DOI怎么找? 1736314
邀请新用户注册赠送积分活动 838329
科研通“疑难数据库(出版商)”最低求助积分说明 783752