亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ConditionSenseNet: A Deep Interpolatory ConvNet for Bearing Intelligent Diagnosis Under Variational Working Conditions

人工智能 计算机科学 深度学习 卷积神经网络 稳健性(进化) 人工神经网络 模式识别(心理学) 插值(计算机图形学) 卷积(计算机科学) 支持向量机 机器学习 运动(物理) 生物化学 化学 基因
作者
Yinjun Wang,Xiaoxi Ding,Rui Liu,Yimin Shao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (10): 6558-6568 被引量:37
标识
DOI:10.1109/tii.2021.3134273
摘要

Deep learning, with its ability of feature mining and logical judgement, has been widely studied in industrial intelligent diagnosis, including bearing fault diagnosis. However, an explicable and representable expression of deep learning architecture for the variational working conditions has been rarely discussed while it is known that vibration features from bearings are seriously influenced by variational working conditions. In this article, a deep interpolation ConvNet (DICN) architecture with three special layers, consisting of multiple sub-ConvNet units, weight unit, and fusion unit, is presented with the basic deep ConvNet architecture. Different from the traditional network, the first sub-ConvNet extracts the fault features under different working conditions, while the corresponding condition weight unit is learned from a working condition identification task. With the principle of interpolation theory, fusion unit is employed to achieve a sound fault feature representation under unknown working condition, which is named as ConditionSenseNet (CSN). This CSN architecture provides a way to dynamically express the crucial features hidden in the samples with the influence of working conditions suppressed, especially the variational working factors will be interpolated in this nonlinear fitting model. Additionally, three experimental studies are tested to verify the effectiveness of the proposed DICN method for bearing intelligent diagnosis under variational working conditions. The results and comparisons with other seven deep learning models show the proposed method shows outstanding robustness and higher accuracy where the accuracy of DICN is higher than the one of convolution neural network by more than 9% even if the working condition is variational.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
20秒前
27秒前
47秒前
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助迅速的岩采纳,获得10
2分钟前
2分钟前
迅速的岩发布了新的文献求助10
2分钟前
2分钟前
在水一方应助迅速的岩采纳,获得10
3分钟前
科研通AI2S应助Yuuw采纳,获得10
3分钟前
YONGGE完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
无虞完成签到,获得积分10
4分钟前
在水一方应助研友_R2D2采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
迅速的岩发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
研友_R2D2发布了新的文献求助10
5分钟前
生姜批发刘哥完成签到 ,获得积分0
5分钟前
朴实剑通完成签到 ,获得积分10
5分钟前
梓歆发布了新的文献求助30
5分钟前
九司应助研友_R2D2采纳,获得10
5分钟前
发发完成签到 ,获得积分10
5分钟前
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553