Deep Learning-Based Defect Detection From Sequences of Ultrasonic B-Scans

超声波传感器 深度学习 计算机科学 人工智能 模式识别(心理学) 声学 材料科学 超声成像 物理
作者
Duje Medak,Luka Posilovic,Marko Subasic,Marko Budimir,Sven Lončarić,Duje Medak,Luka Posilovic,Marko Subasic,Marko Budimir,Sven Lončarić
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 2456-2463 被引量:22
标识
DOI:10.1109/jsen.2021.3134452
摘要

Ultrasonic testing (UT) is one of the commonly used non-destructive testing (NDT) techniques for material evaluation and defect detection. The acquisition of UT data is largely performed automatically by using various robotic manipulators which can ensure the consistency of the recorded data. On the other hand, complete analysis of the acquired data is still performed manually by trained personnel. This makes the reliability of defect detection highly dependent on humans' knowledge and experience. Most of the previous attempts for automated defect detection from UT data analyze individual A-scans. In such cases, valuable information present in the surrounding A-scans remains unused and limits the performance of such methods. The situation is better if a B-scan is used as an input, especially if the dataset is large enough to train a deep learning object detector. However, if each of the B-scans is analyzed individually, as it was done so far in the literature, there is still valuable information left in the surrounding B-scans that could be used to improve the precision. We showed that expanding the input layer of an existing method will not lead to an improvement and that a more complex approach is needed in order to effectively use information from neighboring B-scans. We propose two approaches based on high-dimensional feature maps merging. We showed that proposed models improve mean average precision (mAP) compared to the previous state-of-the-art model by 2% for input resolutions of $512\times 512$ pixels, and 3.4% for input resolutions of $384\times 384$ pixels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助2339822272采纳,获得10
1秒前
chenmeng完成签到,获得积分10
1秒前
自觉紫安完成签到,获得积分10
2秒前
2秒前
QIQI发布了新的文献求助10
2秒前
斯文嫣娆发布了新的文献求助10
3秒前
饭团0814完成签到,获得积分10
3秒前
3秒前
4秒前
hjs完成签到,获得积分10
4秒前
5秒前
可爱的函函应助mmol采纳,获得10
6秒前
熊风发布了新的文献求助10
6秒前
一叶知秋完成签到,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
无情冰棍发布了新的文献求助10
7秒前
8秒前
今晚吃什么完成签到 ,获得积分10
8秒前
LIU发布了新的文献求助20
9秒前
仁爱的念文关注了科研通微信公众号
9秒前
Callmeteji完成签到,获得积分10
9秒前
10秒前
祺王862完成签到,获得积分10
10秒前
10秒前
10秒前
JasonSun完成签到,获得积分10
11秒前
上官若男应助QIQI采纳,获得10
12秒前
12秒前
13秒前
nuonuo发布了新的文献求助10
14秒前
小蘑菇应助叶羡采纳,获得10
14秒前
Jennie发布了新的文献求助10
17秒前
youniverse完成签到 ,获得积分10
17秒前
19秒前
20秒前
tengfei完成签到,获得积分10
20秒前
希望天下0贩的0应助Jennie采纳,获得10
21秒前
21秒前
21秒前
LIU完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333