已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Controllable protein design with language models

计算机科学
作者
Noelia Ferruz,Birte Höcker
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 521-532 被引量:156
标识
DOI:10.1038/s42256-022-00499-z
摘要

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽君发布了新的文献求助10
刚刚
CipherSage应助CornellRong采纳,获得10
刚刚
kaka完成签到,获得积分10
刚刚
刚刚
1秒前
junia发布了新的文献求助10
1秒前
1秒前
3秒前
我是老大应助流浪采纳,获得20
4秒前
4秒前
5秒前
Xumeiling发布了新的文献求助10
6秒前
Lee完成签到 ,获得积分10
6秒前
结实碧空发布了新的文献求助10
7秒前
7秒前
王懒懒发布了新的文献求助10
8秒前
8秒前
yizhu发布了新的文献求助10
9秒前
10秒前
领导范儿应助刻苦羽毛采纳,获得30
12秒前
Hedy驳回了liu应助
12秒前
风生完成签到,获得积分10
13秒前
wwsybx完成签到 ,获得积分10
13秒前
JamesPei应助Xumeiling采纳,获得10
13秒前
14秒前
积极向上完成签到,获得积分10
15秒前
传奇3应助杰尼乾乾采纳,获得10
15秒前
小坚果发布了新的文献求助10
17秒前
mhr关注了科研通微信公众号
17秒前
18秒前
小小发布了新的文献求助10
18秒前
18秒前
19秒前
ZZZ完成签到,获得积分10
19秒前
四面八方来钱完成签到 ,获得积分10
20秒前
Criminology34应助Human123采纳,获得10
21秒前
xu完成签到,获得积分10
22秒前
22秒前
ZZZ发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703