已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collaborative innovation: a technological perspective

透视图(图形) 计算机科学 工程伦理学 工程类 人工智能
作者
Angélica Pigola,Priscila Rezende da Costa,Marcos Rogério Mazieri,Isabel Cristina Scafuto
出处
期刊:International Journal of Innovation [University Nove de Julho - Uninove]
卷期号:10 (2): 204-211
标识
DOI:10.5585/iji.v10i2.22256
摘要

Collaborative innovation become one of the most strategy decision across firms and a well-defined phenomenon that became popular among practitioners and researchers (A. S. Cui O’Connor, 2012; Liu et al., 2017). Many theories were considered to explain collaboration phenomena such as resources-based view, organization theory, strategy, information processing theory, the economic theory of complementarities among others (Barney, 1991; Cassiman Veugelers, 2006; Daft Lengel, 1986; Milgrom Roberts, 1995; Tushman Nadler, 1978). However, technology advances provide new variations in collaboration to innovativeness. For example, collaborative activities with suppliers and customers (Karhade Dong, 2021), community source projects (Liu et al., 2017) or collaboration with distant partners (T. Cui et al., 2020), corporate engagement with startups (Shankar Shepherd, 2019), innovation networks (Aarikka-Stenroos et al., 2017), and innovation ecosystems (Granstrand Holgersson, 2020).Collaborative innovation takes over the existence of an inter-organizational activities executed by people that together perform with high level of interdependence something innovative (T. Cui et al., 2020; Davis Eisenhardt, 2011). Some authors (Adner Kapoor, 2010; T. Cui et al., 2020; Rico et al., 2008) highlight that this interdependence is characterized along two dimensions: technological and behavioral. Technological interdependence is linked to knowledge and the exchange of resources for research and development, and behavioral interdependence is associated with the field of communication, social interaction between collaborative actors and the coordination of these relationships to innovate.Other perspectives in the literature explain and theorize about collaborative innovation as knowledge-sharing trajectories (Majchrzak Malhotra, 2016; Trkman Desouza, 2012), or multi-actor collaboration (Torfing, 2019), or building collaborative capabilities (Swink, 2006) among other approaches. In this editorial, we bring some thoughts and idea about collaborative innovation under a technological perspective to incentive researchers to go beyond in innovative technologies research embedded in collaboration.Collaboration efforts also became a common way of firms to enhance innovations and its technological development with clear determinants about their beneficial effects, and therefore, the literature is well stablished in this subject (Pereira et al., 2018). However, collaboration only succeeds when technological resources and capabilities are combined, and parties define jointly how to enhance and use them accordingly (Snow, 2015).Collaborative innovation as a new technological paradigm refers to a network innovation model supported by interactions of multiple parties such as enterprises, universities and research institutions as core elements and government, financial institutions, nonprofit organizations, intermediaries as auxiliary elements (W. Zhang et al., 2021). Notwithstanding, collaboration networks operating in different organizational levels are present in various patterns and characteristics of evolution, they require different actors and capabilities in the network composition to become a remarkable asset in developing technologies to be patented afterwards in some cases (Gomes et al., 2017).In facing of risks of failures during innovative trajectories, firms invest in collaborative initiatives as an attempt to mitigate cost impacts, share responsibilities and greater technical performance in the process of technology lifecycle development. Thus, technological alliances are useful means to attend these goals (Kim Song, 2007). Technological alliances are critical to enable digital transformation and innovation. Briefly, Zhang et al. (2021) highlight technological alliance as a voluntary interfirm cooperation involving codeveloping technologies through sharing and exchanging of these technologies to meet business needs (W. Zhang et al., 2021).The collaborations in various technological domains help to bring heterogenous knowledge, complementary resources, and capabilities for a better innovation performance (Swink, 2006; W. Zhang et al., 2021). Under the perspective that innovation is essentially knowledge creation (Nonaka, 1994), collaborative innovation through a technological perspective may be configured by different activities, processes, or routines of generation, sharing, integration, and utilization of knowledge produced during the innovation process lifecycle (Nonaka, 1994; W. Zhang et al., 2021). Further, this configuration of activities, processes, or routines support the development of evolutionary technological capabilities (Sampson, 2007).In the field of technological innovations, the evolution now is more collaborative in nature (J. Zhang et al., 2019). Collaboration is a trend for technological prosperity. Analyzing collaborative innovation in the literature is a great challenge even if the focus on technologies is defined because various aspects and applications of collaboration to innovate invade the academic literature in many forms. For instance, Zhou and Ren (2021) analyzed low-carbon technology collaborative innovation in industrial cluster; Shen et al. (2021) studied collaborative innovation in supply chain systems; Wan et al. (2022) highlight that blockchain application intensify collaborative innovation through distributed computing, cryptography and game theory; Li and Zhou (2022) researched on the mechanism of Government–Industry–University–Institute collaborative innovation in green technology; and Fan et al. (2022) pointed out that collaborative innovation also may act as a driver to mobilize and coordinate scientific and technological resources within a city, further promoting innovative development among cities.On the other hand, technological collaborative innovations has its own dark side for firms: it has been costly, it demands money, efforts, and time (Torugsa Arundel, 2016; Wegrich, 2019), and, further, it provokes operational adjustments, technological reconfiguration, and legal barriers to overcome to be effective for innovation (McGuire Agranoff, 2011; Vivona et al., 2022). To address this side of collaborative innovation, Vivona et al. (2022) developed the cost theory to systematize all insights from the literature in four main factors: governance, compactness, reliability, and institutionalization to shed light on a broader range of costs for innovation incurred by collaborative arrangements. Governance refers to relationships in hierarchical level and the number of collaborators involved, reliability refers to relationships’ quality; compactness is about the degree of formality in relationships that connect collaborators; and institutionalization that measure what the extent the relationships in practice have been pre-established. This cost perspective may be explored empirically.The decentralization of technological collaborative innovation, its nonlinear, globalized, and networked form transformed its process to more collaborative approaches among entities (Fan et al., 2020). Lopes and Farias (2022) showed that technology tools support the establishment of relationships of trust promoted by leaders committed to well-established goals, being a characteristic of governance that has a positive influence on collaborative innovation processes. Hwang (2020) mentioned that several countries have implemented policies to facilitate technological convergence by supporting collaborative innovations. The author also mentions that collaborative innovation is a crucial strategy to facilitate technological convergence. In sum, firms have been increased collaboration in technological activities and collaboration works as an enabling to learn about turbulent technological change and uncertainties to enhance the ability to deal with innovations (Dodgson, 1993).Technological collaborative innovation is considered essential to promote the flow of resources, knowledge, and technology among entities, considering that innovation is no longer a closed and isolated system. The main premise is technologies do not exist in isolation. Only by exchanging materials, energy, and information with the environment the innovation system be renewed and developed. Therefore, the integrator condition of technological collaborative innovation is also conducive to a more comprehensive disclosure of the collaborative mode and overall performance of technological innovation activities (Fan et al., 2020).Technological collaborative innovation is not a merely coordination of an orderly arrangements of efforts to pursue a common technological purpose (Mooney, 1953), or a merely cooperation to join agreed-on goals into a share comprehension about design systems or reconfigure technological resources (Gulati et al., 2012). It merges cooperation (commitment towards same end) with coordination (complexity to work together effectively) (Vivona et al., 2022). This view may be much more explored by the researchers to enhance the practical aspects of this perspective.In general, collaboration itself does not survive in the face of inevitable behavioral problems which requires an establishment of trust characterized by receptive organizational cultures, community of interest, and continually supplement knowledge for the purpose of collaboration in highly successful technological innovations (Dodgson, 1993). Thus, this can be a new chapter for technological collaborative innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的琳发布了新的文献求助10
2秒前
TiY完成签到 ,获得积分10
9秒前
追寻天亦完成签到,获得积分10
11秒前
17秒前
天线宝宝完成签到 ,获得积分10
22秒前
bkagyin应助想你的腋采纳,获得10
24秒前
26秒前
Salvatore发布了新的文献求助10
33秒前
kjding发布了新的文献求助10
35秒前
35秒前
Manbo完成签到,获得积分10
40秒前
谷子完成签到 ,获得积分10
42秒前
gk123kk完成签到,获得积分10
42秒前
王文静完成签到 ,获得积分0
42秒前
43秒前
小栩完成签到 ,获得积分10
44秒前
ding应助tianya采纳,获得10
49秒前
52秒前
Gssss完成签到 ,获得积分10
54秒前
56秒前
因几发布了新的文献求助10
56秒前
喻鞅完成签到,获得积分10
59秒前
淡淡瓜子完成签到 ,获得积分10
1分钟前
舒心白羊完成签到 ,获得积分10
1分钟前
pass完成签到 ,获得积分10
1分钟前
斯文的尔冬完成签到,获得积分10
1分钟前
1分钟前
shinysparrow应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Heidi完成签到 ,获得积分10
1分钟前
好久不见完成签到 ,获得积分10
1分钟前
yuying完成签到 ,获得积分10
1分钟前
1分钟前
和谐续完成签到 ,获得积分10
1分钟前
神内小钟完成签到,获得积分10
1分钟前
xiaowang完成签到 ,获得积分10
1分钟前
wtt完成签到 ,获得积分10
1分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
1分钟前
Rebeccaiscute完成签到 ,获得积分10
1分钟前
互助遵法尚德完成签到,获得积分0
1分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2395253
求助须知:如何正确求助?哪些是违规求助? 2098565
关于积分的说明 5288857
捐赠科研通 1825989
什么是DOI,文献DOI怎么找? 910377
版权声明 559972
科研通“疑难数据库(出版商)”最低求助积分说明 486551