Bayesian network analysis reveals the interplay of intracranial aneurysm rupture risk factors

贝叶斯网络 计算机科学 贝叶斯概率 马尔科夫蒙特卡洛 人工智能 自举(财务) 队列 回归 机器学习 统计 医学 计量经济学 数学
作者
Matteo Delucchi,Georg Spinner,Marco Scutari,Philippe Bijlenga,Sandrine Morel,Christoph M. Friedrich,Reinhard Furrer,Sven Hirsch
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:147: 105740-105740 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.105740
摘要

Clinical decision making regarding the treatment of unruptured intracranial aneurysms (IA) benefits from a better understanding of the interplay of IA rupture risk factors. Probabilistic graphical models can capture and graphically display potentially causal relationships in a mechanistic model. In this study, Bayesian networks (BN) were used to estimate IA rupture risk factors influences. From 1248 IA patient records, a retrospective, single-cohort, patient-level data set with 9 phenotypic rupture risk factors (n=790 complete entries) was extracted. Prior knowledge together with score-based structure learning algorithms estimated rupture risk factor interactions. Two approaches, discrete and mixed-data additive BN, were implemented and compared. The corresponding graphs were learned using non-parametric bootstrapping and Markov chain Monte Carlo, respectively. The BN models were compared to standard descriptive and regression analysis methods. Correlation and regression analyses showed significant associations between IA rupture status and patient's sex, familial history of IA, age at IA diagnosis, IA location, IA size and IA multiplicity. BN models confirmed the findings from standard analysis methods. More precisely, they directly associated IA rupture with familial history of IA, IA size and IA location in a discrete framework. Additive model formulation, enabling mixed-data, found that IA rupture was directly influenced by patient age at diagnosis besides additional mutual influences of the risk factors. This study establishes a data-driven methodology for mechanistic disease modelling of IA rupture and shows the potential to direct clinical decision-making in IA treatment, allowing personalised prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
99关注了科研通微信公众号
刚刚
刚刚
lanmo发布了新的文献求助10
刚刚
小可爱完成签到 ,获得积分10
1秒前
ssx完成签到,获得积分10
1秒前
上善若水发布了新的文献求助10
1秒前
cheng完成签到,获得积分10
2秒前
2秒前
李健应助贾舒涵采纳,获得10
2秒前
xff发布了新的文献求助10
3秒前
Liuuhhua完成签到,获得积分10
3秒前
Haterain完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
整齐冰凡发布了新的文献求助10
6秒前
义气山水发布了新的文献求助10
7秒前
8秒前
小周发布了新的文献求助10
9秒前
共享精神应助boshi采纳,获得10
9秒前
隐形曼青应助花痴的幻儿采纳,获得10
9秒前
9秒前
9秒前
淡然的筝发布了新的文献求助10
10秒前
lanmo完成签到,获得积分10
10秒前
隐形曼青应助hbb采纳,获得10
12秒前
zpq发布了新的文献求助10
12秒前
直觉完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
WuHong发布了新的文献求助10
14秒前
清风发布了新的文献求助10
14秒前
何香香能吃苦完成签到,获得积分10
15秒前
嘤嘤嘤发布了新的文献求助10
15秒前
zycdx3906发布了新的文献求助10
15秒前
15秒前
16秒前
JY发布了新的文献求助10
17秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Limited Prognostic Value of Pretreatment Neutrophil-to-Lymphocyte Ratios in Elderly Patients with Multiple Myeloma 200
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833093
求助须知:如何正确求助?哪些是违规求助? 3375551
关于积分的说明 10489469
捐赠科研通 3095145
什么是DOI,文献DOI怎么找? 1704250
邀请新用户注册赠送积分活动 819892
科研通“疑难数据库(出版商)”最低求助积分说明 771671