Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan

医学 随机森林 急诊医学 预测效度 机器学习 健康档案 临床决策支持系统 人工智能 风险评估 观察研究 回顾性队列研究 物理疗法 逻辑回归 病历 接收机工作特性 计算机科学 医疗保健 内科学 决策支持系统 临床心理学 经济增长 经济 计算机安全
作者
Gojiro Nakagami,Shinichiroh Yokota,Aya Kitamura,Toshiaki Takahashi,Kojiro Morita,Hiroshi Noguchi,Kazuhiko Ohe,Hiromi Sanada
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:119: 103932-103932 被引量:35
标识
DOI:10.1016/j.ijnurstu.2021.103932
摘要

In hospitals, nurses are responsible for pressure injury risk assessment using several kinds of risk assessment scales. However, their predictive validity is insufficient to initiate targeted preventive strategy for each patient. The use of electronic health records with machine learning technique is a promising strategy to provide automated clinical decision-making aid. The purpose of this study was to construct a predictive model for pressure injury development which included feature variables that can be collected on the first day of hospitalization by nurses who routinely input the data to electronic health records. Retrospective observational cohort study. This study was conducted at a university hospital in Japan. This study used electronic health records, which include entry/discharge records, basic nursing records, and pressure injury management documents (N = 75,353). The outcome measure was the pressure injuries which developed outside of an operation theatre and frequently appeared on the specific body parts at high risk of pressure injury development. We utilized four major classifiers: logistic regression, random forest, linear support vector machine, and extreme gradient boosting (XGBoost) with 5-fold cross-validation technique. The area under the receiver operating characteristic curve (AUC) was used for evaluating predictive performance. The proportion of hospital-acquired pressure injuries was 0.52%. The receiver operating characteristic curves revealed the best predictive performance for the XGBoost model, achieving the highest sensitivity of 0.78±0.03 and AUC of 0.80±0.02 amongst four types of classifiers. Variables related to difficulty in activities of daily living, anorexia, and respiratory or cardiac disorders were extracted as important features. Our findings suggest that routinely collected health data by nurses on the first day of patient admission have the potential to help determine high-risk patients for pressure injury development. Tweetable abstract: Machine learning models on routinely collected electronic health records data successfully predict pressure injury development during hospitalization. This work was supported by a JSPS KAKENHI Grant-in-Aid for Exploratory Research (16K15865).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kishi完成签到,获得积分10
1秒前
酷酷映之发布了新的文献求助10
3秒前
lb发布了新的文献求助10
3秒前
bkagyin应助杨桃采纳,获得10
4秒前
5秒前
沉默的钻石完成签到,获得积分10
5秒前
Dannnn发布了新的文献求助10
5秒前
jenningseastera应助budingman采纳,获得10
6秒前
6秒前
jenningseastera应助budingman采纳,获得10
6秒前
jenningseastera应助budingman采纳,获得10
6秒前
任梓宁完成签到,获得积分10
6秒前
jenningseastera应助budingman采纳,获得10
6秒前
狠毒的小龙虾完成签到,获得积分10
6秒前
7秒前
8秒前
无奈的又晴完成签到,获得积分10
8秒前
NZH完成签到,获得积分10
9秒前
9秒前
暴富发布了新的文献求助10
10秒前
Youngen发布了新的文献求助10
13秒前
13秒前
可靠吐司发布了新的文献求助10
14秒前
酪酪Alona完成签到,获得积分10
14秒前
15秒前
yc发布了新的文献求助10
16秒前
大壮完成签到,获得积分10
17秒前
gao_yiyi应助BanLisen采纳,获得50
18秒前
杨桃发布了新的文献求助10
18秒前
一一应助pengchengxi采纳,获得10
18秒前
淡然冬灵应助徐臣年采纳,获得30
19秒前
20秒前
Atlantis发布了新的文献求助10
20秒前
受伤金鑫发布了新的文献求助10
21秒前
23秒前
可靠吐司完成签到,获得积分20
23秒前
小马发布了新的文献求助10
25秒前
Atlantis完成签到,获得积分10
26秒前
孟子完成签到 ,获得积分10
29秒前
毛毛发布了新的文献求助10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799605
求助须知:如何正确求助?哪些是违规求助? 3345044
关于积分的说明 10322948
捐赠科研通 3061514
什么是DOI,文献DOI怎么找? 1680380
邀请新用户注册赠送积分活动 807055
科研通“疑难数据库(出版商)”最低求助积分说明 763462