A hybrid CoOOH-rGO/Fe2O3 photoanode with spatial charge separation and charge transfer for efficient photoelectrochemical water oxidation

光电流 石墨烯 氧化物 赤铁矿 介电谱 分解水 化学 化学工程 电子转移 载流子 光电化学 纳米技术 电化学 材料科学 电极 光催化 催化作用 光化学 矿物学 光电子学 有机化学 物理化学 工程类 生物化学
作者
Ruifeng Chong,Zhenzhen Wang,Jiaqi Lv,Jiayue Rong,Ling Zhang,Yushuai Jia,Li Wang,Zhixian Chang,Xiang Wang
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:399: 170-181 被引量:52
标识
DOI:10.1016/j.jcat.2021.05.006
摘要

A facile post-hydrothermal combined with chelation-mediated in-situ growth method was developed to fabricate CoOOH-rGO/Fe 2 O 3 with spatially separated CoOOH and rGO. rGO and CoOOH exhibit important functions that modulate the transfers of the electrons and holes, as well as suppress the bulk and the surface recombination, thus significantly improve the photoelectrochemical water oxidation performance of Fe 2 O 3 . • A hybrid CoOOH-rGO/Fe 2 O 3 with spatially separated structure was facilely fabricated. • CoOOH-rGO/Fe 2 O 3 exhibited outstanding photoelectrochemical water oxidation performance. • rGO as conductive network facilitates the electron transfer from Fe 2 O 3 to the substrate. • CoOOH passivates the surface states of Fe 2 O 3 and improves the charge separation and the charge transfer. As a promising photoanode for photoelectrochemical (PEC) water oxidation, hematite (Fe 2 O 3 ) still suffers from poor charge mobility and serious charges recombination and sluggish surface oxygen evolution kinetics. Herein, a hybrid photoanode of cobalt (oxy)hydroxide coupled with reduced graphene oxide modified Fe 2 O 3 (CoOOH-rGO/Fe 2 O 3 ) is well crafted by a facile hydrothermal synthesis with a chelation-mediated in-situ growth method. Morphology characterizations indicate rGO forms the internal network among isolated Fe 2 O 3 and CoOOH nanosheets distribute on the terminal of Fe 2 O 3 , forming a spatial separated nanostructure . The resultant CoOOH-rGO/Fe 2 O 3 exhibits an obviously reduced onset potential of ca. 150 mV and a significantly enhanced photocurrent density of 2.56 mA cm −2 at 1.23 V, which is ca. 3.3 times higher than that of bare Fe 2 O 3 . Especially, the functions of rGO and CoOOH are studied by using electrochemical impedance spectroscopy, open circuit potentials and intensity modulated photocurrent spectroscopy. It is found rGO act as conductive network which facilitates the electron transfer from Fe 2 O 3 to the substrate, while CoOOH evidently passivate the surface states of Fe 2 O 3 , improve charge separation and provide catalytic active sites for water oxidation. The spatial charge separation and charge transfer caused by CoOOH and rGO are responsible for the enhanced PEC performance of water oxidation. The rational design and the facile fabrication strategy exhibit great potential to be used for other PEC system with great efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小智发布了新的文献求助10
刚刚
小福发布了新的文献求助10
刚刚
majianzzu发布了新的文献求助30
刚刚
Starry完成签到 ,获得积分10
刚刚
1秒前
今后应助开心potato采纳,获得10
1秒前
窦白梦发布了新的文献求助200
1秒前
1秒前
1秒前
qiyr完成签到,获得积分10
2秒前
2秒前
Arsenc完成签到,获得积分20
3秒前
惊天大幂幂完成签到,获得积分10
3秒前
我我我发布了新的文献求助10
3秒前
3秒前
留胡子的柚子完成签到,获得积分10
3秒前
4秒前
笨笨念文完成签到 ,获得积分10
4秒前
4秒前
4秒前
Hello应助小白采纳,获得10
4秒前
zgaolei完成签到,获得积分10
4秒前
中岛悠斗完成签到,获得积分10
4秒前
4秒前
伶俐的以筠完成签到,获得积分10
4秒前
4秒前
高兴尔珍完成签到,获得积分10
6秒前
科研通AI6应助啦啦啦采纳,获得10
6秒前
7秒前
Jasper应助傻傻的凌寒采纳,获得10
7秒前
称心的乘云完成签到,获得积分20
8秒前
8秒前
可爱的函函应助szx233采纳,获得10
8秒前
Tammy完成签到,获得积分10
8秒前
8秒前
py发布了新的文献求助10
8秒前
阿司匹林发布了新的文献求助10
9秒前
香蕉觅云应助烤肠采纳,获得10
9秒前
小智完成签到,获得积分10
9秒前
smg1307发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318625
求助须知:如何正确求助?哪些是违规求助? 4460701
关于积分的说明 13880072
捐赠科研通 4351308
什么是DOI,文献DOI怎么找? 2389838
邀请新用户注册赠送积分活动 1383817
关于科研通互助平台的介绍 1353369