Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China

植被(病理学) 环境科学 人口 气候变化 自然地理学 北京 绿化 地理 中国 生态学 气候学 环境保护 考古 病理 社会学 生物 人口学 医学 地质学
作者
Meichen Jiang,Yuexin He,Conghe Song,Yuepeng Pan,Tong Qiu,Shufang Tian
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:786: 147574-147574 被引量:37
标识
DOI:10.1016/j.scitotenv.2021.147574
摘要

The Beijing-Tianjin-Hebei (BTH) region of China is a typical area where both population and economy have been increasing rapidly in recent decades. The rapid economic development and population increase also bring severe environmental stresses. To better understand the factors that contribute to the regional ecological environment change, this study aims to disaggregate the effects of climate and human activity on vegetation dynamics based on a vegetation index derived from remote sensing for the BTH region through time. First, we implemented a linear regression analysis on the Enhanced Vegetation Index (EVI) in the BTH region from 2001 to 2015. We found vegetation greening mainly occurred in the mountainous area in the north and the west of the BTH region, where the forests and grasslands dominate, and the vegetation browning was mainly distributed in the southeast, where the built-up lands and croplands were located. Then, we used the Random Forest (RF) regression model to rank the importance of the climatic and anthropogenic factors. The results showed that temperature was the most influential factor among our climate variables while land cover dominated the anthropogenic variables. Finally, this study applied the RF model to disaggregate the climatic effects from that of the anthropogenic effects on vegetation dynamics by keeping human-activity- or climate-related variables constant. It showed that the method was capable of quantifying climatic and anthropogenic effects on vegetation changes. This study also found that the N deposition significantly negatively correlated with the vegetation growth trend in BTH. The approach this study proposed advanced our understanding of the driving factors of vegetation dynamics, and the approach is applicable elsewhere.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助mj采纳,获得10
1秒前
2秒前
aqaqaqa完成签到,获得积分10
3秒前
结实涑发布了新的文献求助10
3秒前
gtgyh发布了新的文献求助10
3秒前
怕孤独的鸽子应助123采纳,获得40
3秒前
学渣小林完成签到,获得积分10
3秒前
畅快远山发布了新的文献求助10
4秒前
任小萱发布了新的文献求助30
7秒前
zzh完成签到,获得积分10
9秒前
9秒前
SciGPT应助zhc采纳,获得10
10秒前
算命先生完成签到,获得积分10
12秒前
che完成签到,获得积分10
12秒前
shouyu29应助yihoxu采纳,获得10
13秒前
薯条一克发布了新的文献求助10
14秒前
mmiww完成签到,获得积分10
14秒前
顽固分子完成签到 ,获得积分10
15秒前
18秒前
陈锦辞完成签到 ,获得积分10
18秒前
19秒前
ruby完成签到,获得积分10
21秒前
幸运花花发布了新的文献求助10
24秒前
27秒前
科研通AI5应助打死小胖纸采纳,获得10
27秒前
畅快远山完成签到,获得积分10
27秒前
30秒前
30秒前
30秒前
sharks完成签到,获得积分10
30秒前
sss2021发布了新的文献求助20
31秒前
Vivid完成签到,获得积分10
31秒前
漂亮的孤丹完成签到 ,获得积分10
35秒前
liumoxi发布了新的文献求助10
37秒前
星辰大海应助幸运花花采纳,获得10
38秒前
易中华完成签到,获得积分10
38秒前
zzm314159关注了科研通微信公众号
38秒前
易中华发布了新的文献求助10
41秒前
qitan完成签到,获得积分10
43秒前
45秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848737
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568043
捐赠科研通 3112141
什么是DOI,文献DOI怎么找? 1715101
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647