环形振荡器
计算机科学
炸薯条
自动化
过程(计算)
戒指(化学)
人工智能
变化(天文学)
工艺变化
特征提取
机器学习
电子工程
工程类
CMOS芯片
机械工程
电信
化学
有机化学
操作系统
物理
天体物理学
作者
Min-Yan Su,W. W. Lin,Yen-Ting Kuo,Chien-Mo Li,Eric Jia-Wei Fang,Sung S.-Y. Hsueh
标识
DOI:10.1109/vlsi-dat52063.2021.9427338
摘要
Process variation cause a big variation on chip performance, so we need to apply expensive functional test to do the speed binning. In this work, we propose a machine learning-based chip performance prediction framework. We only consider on-chip ring oscillator's frequency as feature, which can be obtained from structural test. We select most important cells for ring oscillators at pre-silicon stage, so we can minimize the ring oscillators on the chip. Experimental results on 12K industry chips show that our prediction accuracy is comparable to automation test equipment's measurement according to company's criterion.
科研通智能强力驱动
Strongly Powered by AbleSci AI