已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Upfront Commitment in Online Resource Allocation with Patient Customers

竞争分析 多面体 计算机科学 上下界 资源(消歧) 服务(商务) 在线算法 资源配置 数学优化 运筹学 业务 数学 算法 组合数学 计算机网络 营销 数学分析
作者
Negin Golrezaei,Evan Yao
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2108.03517
摘要

In many on-demand online platforms such as ride-sharing, grocery delivery, or shipping, some arriving agents are patient and willing to wait a short amount of time for the resource or service as long as there is an upfront guarantee that service will be ultimately provided within a certain delay. Motivated by this, we present a setting with patient and impatient agents who seek a resource or service that replenishes periodically. Impatient agents demand the resource immediately upon arrival while patient agents are willing to wait a short period conditioned on an upfront commitment to receive the resource. We study this setting under adversarial arrival models using a relaxed notion of competitive ratio. We present a class of POLYtope-based Resource Allocation (POLYRA) algorithms that achieve optimal or near-optimal competitive ratios. Such POLYRA algorithms work by consulting a particular polytope and only making decisions that guarantee the algorithm's state remains feasible in this polytope. When the number of agent types is either two or three, POLYRA algorithms can obtain the optimal competitive ratio. To design these polytopes, we construct an upper bound on the competitive ratio of any algorithm, which is characterized via a linear program (LP) that considers a collection of overlapping worst-case input sequences. Our designed POLYRA algorithms then mimic the optimal solution of this upper bound LP via its polytope's definition, obtaining the optimal competitive ratio. When there are more than three types, our overlapping worst-case input sequences do not necessarily result in an attainable competitive ratio, and so we present a class of simple and interpretable POLYRA algorithm which achieves at least 80% of the optimal competitive ratio. We complement our theoretical studies with numerical analysis which shows the efficiency of our algorithms beyond adversarial arrivals
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助英勇的弼采纳,获得10
刚刚
科研通AI2S应助yhbq采纳,获得10
1秒前
优优完成签到,获得积分10
2秒前
coini完成签到,获得积分10
2秒前
闰月完成签到,获得积分10
2秒前
圣尊鳕幽发布了新的文献求助10
3秒前
王雪晗完成签到 ,获得积分10
5秒前
6秒前
yiyao完成签到 ,获得积分10
7秒前
wanci应助Jiawei采纳,获得10
7秒前
8秒前
那会是永远完成签到,获得积分10
8秒前
10秒前
10秒前
ruann完成签到,获得积分10
11秒前
害羞无春发布了新的文献求助10
12秒前
12秒前
13秒前
圣尊鳕幽完成签到,获得积分10
14秒前
shijia发布了新的文献求助10
15秒前
16秒前
赵坤煊发布了新的文献求助10
18秒前
20秒前
丘比特应助爹爹采纳,获得10
20秒前
阈LUZ完成签到,获得积分10
21秒前
小怪兽完成签到 ,获得积分10
21秒前
英勇的弼发布了新的文献求助10
21秒前
23秒前
ksxx完成签到,获得积分10
23秒前
害羞无春完成签到,获得积分10
24秒前
hahameily完成签到 ,获得积分10
26秒前
27秒前
27秒前
充电宝应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
28秒前
Ava应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738574
求助须知:如何正确求助?哪些是违规求助? 5378562
关于积分的说明 15338020
捐赠科研通 4881484
什么是DOI,文献DOI怎么找? 2623603
邀请新用户注册赠送积分活动 1572337
关于科研通互助平台的介绍 1529143