Hazardous flight region prediction for a small UAV operated in an urban area using a deep neural network

弹道 风速 地形 计算机科学 模拟 气象学 环境科学 实时计算 地理 天文 地图学 物理
作者
Shinkyu Jeong,Kangkuk You,Donghoon Seok
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:118: 107060-107060 被引量:28
标识
DOI:10.1016/j.ast.2021.107060
摘要

With an increase of UAVs in logistics and transportation, the safety of UAVs operated in the urban wind environment becomes an important issue. Small UAVs are more sensitive to the wind environment because of their small size, slow cruising speed, and limited endurance. In the unmanned aircraft system traffic management (UTM), a safety risk assessment under bad weather conditions is an important component. In this study, a hazardous flight region prediction system for small UAVs operated in urban areas is developed using a deep neural network (DNN) to support a risk assessment and safe trajectory planning. A large eddy simulation (LES) is applied to reflect the terrain-driven wind environment in the urban area. The result of a weather research and forecasting (WRF) model is used as an initial and boundary condition of the LES to generate a realistic complicated wind environment in an urban area. Furthermore, an iterative nesting algorithm is applied to the LES to obtain a sufficient resolution of the wind environment, which is suitable for the small UAV scale. The deviation distance from the original flight path due to the wind environment is considered as a flight hazard criterion in this study. The proposed system is able to predict deviation distance due to the wind environment over the entire flight space over time by using the DNN model. The training data for the DNN is obtained using the multicopter flight dynamics simulator, which can take into account the influence of a specific wind environment. With the indexes considering this deviation distance and the local topography (distribution of buildings) in the urban area, the hazardous flight region is predicted. The information supplied by the proposed hazardous flight region prediction model can be used for the flight risk assessment and safe flight trajectory planning to increase the flight safety of small UAVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温童发布了新的文献求助10
刚刚
开心尔芙完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
王哈哈发布了新的文献求助10
2秒前
3秒前
开朗惋庭完成签到 ,获得积分10
3秒前
moonn完成签到,获得积分10
3秒前
遇上就这样吧应助xxyy采纳,获得10
3秒前
李爱国应助雾散采纳,获得10
3秒前
爆米花应助三三四采纳,获得10
4秒前
4秒前
4秒前
Taozhi完成签到,获得积分10
4秒前
5秒前
5秒前
JIANG发布了新的文献求助30
6秒前
科目三应助yyy采纳,获得10
6秒前
杜儒应助多情蓝采纳,获得10
6秒前
Zoey发布了新的文献求助10
7秒前
开朗惋庭关注了科研通微信公众号
7秒前
黄奥龙发布了新的文献求助10
7秒前
小何同学完成签到,获得积分10
8秒前
111发布了新的文献求助30
8秒前
刘露发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
AAA房地产小王完成签到,获得积分10
9秒前
yun发布了新的文献求助10
10秒前
bkagyin应助小熊早就睡啦采纳,获得10
10秒前
10秒前
桐桐应助rider采纳,获得10
10秒前
11秒前
12秒前
77Jagger应助知足肠乐采纳,获得10
13秒前
fish1116完成签到,获得积分10
13秒前
爆米花应助13223456采纳,获得10
13秒前
14秒前
尺素寸心完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664065
求助须知:如何正确求助?哪些是违规求助? 4045593
关于积分的说明 12513772
捐赠科研通 3738126
什么是DOI,文献DOI怎么找? 2064331
邀请新用户注册赠送积分活动 1093956
科研通“疑难数据库(出版商)”最低求助积分说明 974499