fMRI-Informed EEG for brain mapping of imagined lower limb movement: Feasibility of a brain computer interface

可解释性 脑电图 脑-机接口 大脑活动与冥想 同步脑电与功能磁共振 计算机科学 运动表象 人工智能 功能磁共振成像 心理学 特征选择 大脑定位 模式识别(心理学) 物理医学与康复 神经科学 医学
作者
Adrienne Kline,Nils D. Forkert,Banafshe Felfeliyan,Daniel J. Pittman,Bradley G. Goodyear,Janet L. Ronsky
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:363: 109339-109339 被引量:9
标识
DOI:10.1016/j.jneumeth.2021.109339
摘要

EEG and fMRI have contributed greatly to our understanding of brain activity and its link to behaviors by helping to identify both when and where the activity occurs. This is particularly important in the development of brain-computer interfaces (BCIs), where feed forward systems gather data from imagined brain activity and then send that information to an effector. The purpose of this study was to develop and evaluate a computational approach that enables an accurate mapping of spatial brain activity (fMRI) in relation to the temporal receptors (EEG electrodes) associated with imagined lower limb movement.EEG and fMRI data from 16 healthy, male participants while imagining lower limb movement were used for this purpose. A combined analysis of fMRI data and EEG electrode locations was developed to identify EEG electrodes with a high likelihood of capturing imagined lower limb movement originating from various clusters of brain activity. This novel feature selection tool was used to develop an artificial neural network model to classify right and left lower limb movement.Results showed that left versus right lower limb imagined movement could be classified with 66.5% accuracy using this approach. Comparison with existing methods: Adopting a purely data-driven approach for feature selection to use in the right/left classification task resulted in the same accuracy (66.6%) but with reduced interpretability.The developed fMRI-informed EEG approach could pave the way towards improved brain computer interfaces for lower limb movement while also being applicable to other systems where fMRI could be helpful to inform EEG acquisition and processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐完成签到,获得积分10
刚刚
RNAPW发布了新的文献求助10
1秒前
LiuKangwei完成签到,获得积分10
1秒前
辛勤的诗柳应助yyc采纳,获得10
3秒前
txt0127发布了新的文献求助10
3秒前
3秒前
幸福亦竹发布了新的文献求助10
4秒前
4秒前
小张爱科研完成签到,获得积分10
4秒前
Nathan完成签到,获得积分0
4秒前
郝富完成签到,获得积分0
5秒前
5秒前
wch071完成签到,获得积分10
6秒前
科研通AI6应助hah采纳,获得10
7秒前
飞快的孱完成签到,获得积分10
7秒前
俊杰完成签到,获得积分10
9秒前
完美世界应助CXJ采纳,获得10
10秒前
陈佳琦关注了科研通微信公众号
10秒前
莫言发布了新的文献求助20
10秒前
8D发布了新的文献求助10
10秒前
曹毅凯完成签到,获得积分10
11秒前
1752795896完成签到,获得积分10
11秒前
完美谷秋完成签到 ,获得积分10
13秒前
可爱的函函应助RenSiyu采纳,获得30
13秒前
13秒前
雪里的脚步完成签到 ,获得积分10
13秒前
科研通AI5应助俊杰采纳,获得10
14秒前
hcsdgf完成签到 ,获得积分10
14秒前
乌云乌云快走开完成签到,获得积分10
14秒前
pinst7关注了科研通微信公众号
15秒前
CipherSage应助8D采纳,获得10
16秒前
16秒前
16秒前
17秒前
HERE完成签到,获得积分10
17秒前
怡然尔柳发布了新的文献求助30
17秒前
冉冉完成签到,获得积分10
17秒前
Regine完成签到,获得积分10
19秒前
19秒前
程时芸完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4720798
求助须知:如何正确求助?哪些是违规求助? 4080953
关于积分的说明 12620250
捐赠科研通 3785915
什么是DOI,文献DOI怎么找? 2091086
邀请新用户注册赠送积分活动 1117152
科研通“疑难数据库(出版商)”最低求助积分说明 994006