EMD-Based Temporal and Spectral Features for the Classification of EEG Signals Using Supervised Learning

模式识别(心理学) 脑电图 人工智能 希尔伯特-黄变换 特征提取 支持向量机 计算机科学 质心 特征(语言学) 时频分析 信号(编程语言) 特征向量 语音识别 计算机视觉 精神科 程序设计语言 哲学 滤波器(信号处理) 语言学 心理学
作者
Farhan Riaz,Ali Hassan,Saad Rehman,Imran Khan Niazi,Kim Dremstrup
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 28-35 被引量:352
标识
DOI:10.1109/tnsre.2015.2441835
摘要

This paper presents a novel method for feature extraction from electroencephalogram (EEG) signals using empirical mode decomposition (EMD). Its use is motivated by the fact that the EMD gives an effective time-frequency analysis of nonstationary signals. The intrinsic mode functions (IMF) obtained as a result of EMD give the decomposition of a signal according to its frequency components. We present the usage of upto third order temporal moments, and spectral features including spectral centroid, coefficient of variation and the spectral skew of the IMFs for feature extraction from EEG signals. These features are physiologically relevant given that the normal EEG signals have different temporal and spectral centroids, dispersions and symmetries when compared with the pathological EEG signals. The calculated features are fed into the standard support vector machine (SVM) for classification purposes. The performance of the proposed method is studied on a publicly available dataset which is designed to handle various classification problems including the identification of epilepsy patients and detection of seizures. Experiments show that good classification results are obtained using the proposed methodology for the classification of EEG signals. Our proposed method also compares favorably to other state-of-the-art feature extraction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助Fly采纳,获得10
刚刚
wyx发布了新的文献求助10
刚刚
刚刚
yiyi131发布了新的文献求助10
1秒前
今后应助半夏采纳,获得10
1秒前
背后中心发布了新的文献求助10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Akim应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
华123应助科研通管家采纳,获得10
3秒前
kiminonawa应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
塔塔应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
kiminonawa应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
az完成签到 ,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
twostand应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
kiminonawa应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323