MitoTarget Modeling Using ANN-Classification Models Based on Fractal SEM Nano-Descriptors: Carbon Nanotubes as Mitochondrial F0F1-ATPase Inhibitors

分形 ATP酶 纳米- 人工智能 碳纳米管 生物系统 化学 纳米技术 计算机科学 材料科学 生物 生物化学 数学 复合材料 数学分析
作者
Michael González‐Durruthy,Silvana Manske Nunes,Juliane Ventura‐Lima,Marcos A. Gelesky,Humberto González‐Díaz,José María Monserrat,Riccardo Concu,M. Natália D. S. Cordeiro
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 86-97 被引量:15
标识
DOI:10.1021/acs.jcim.8b00631
摘要

Recently, it has been suggested that the mitochondrial oligomycin A-sensitive F0-ATPase subunit is an uncoupling channel linked to apoptotic cell death, and as such, the toxicological inhibition of mitochondrial F0-ATP hydrolase can be an interesting mitotoxicity-based therapy under pathological conditions. In addition, carbon nanotubes (CNTs) have been shown to offer higher selectivity like mitotoxic-targeting nanoparticles. In this work, linear and nonlinear classification algorithms on structure–toxicity relationships with artificial neural network (ANN) models were set up using the fractal dimensions calculated from CNTs as a source of supramolecular chemical information. The potential ability of CNT-family members to induce mitochondrial toxicity-based inhibition of the mitochondrial H+-F0F1-ATPase from in vitro assays was predicted. The attained experimental data suggest that CNTs have a strong ability to inhibit the F0-ATPase active-binding site following the order oxidized–CNT (CNT–COOH > CNT–OH) > pristine–CNT and mimicking the oligomycin A mitotoxicity behavior. Meanwhile, the performance of the ANN models was found to be improved by including different nonlinear combinations of the calculated fractal scanning electron microscopy (SEM) nanodescriptors, leading to models with excellent internal accuracy and predictivity on external data to classify correctly CNT-mitotoxic and nonmitotoxic with specificity (Sp > 98.9%) and sensitivity (Sn > 99.0%) from ANN models compared with linear approaches (LNN) with Sp ≈ Sn > 95.5%. Finally, the present study can contribute toward the rational design of carbon nanomaterials and opens new opportunities toward mitochondrial nanotoxicology-based in silico models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ocean发布了新的文献求助10
刚刚
灵梦柠檬酸完成签到,获得积分10
刚刚
1秒前
科研通AI5应助Oops采纳,获得10
2秒前
文安发布了新的文献求助10
2秒前
漂亮水绿完成签到,获得积分10
3秒前
宫野珏完成签到,获得积分20
4秒前
佟蓝血发布了新的文献求助10
4秒前
VDC应助刻苦慕晴采纳,获得30
6秒前
赘婿应助成就的绮烟采纳,获得30
8秒前
科研通AI5应助111采纳,获得10
12秒前
乐乐应助单纯清采纳,获得10
12秒前
冰火完成签到,获得积分10
16秒前
17秒前
yangting发布了新的文献求助10
17秒前
科研通AI5应助受伤南霜采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得30
18秒前
han应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
柯罗诺斯J关注了科研通微信公众号
18秒前
烟花应助科研通管家采纳,获得10
18秒前
19秒前
liang发布了新的文献求助10
21秒前
ss完成签到,获得积分20
21秒前
Orange应助小Q采纳,获得10
21秒前
萨特完成签到,获得积分10
21秒前
所所应助茉莉采纳,获得10
23秒前
梦梦的小可爱完成签到 ,获得积分10
23秒前
25秒前
28秒前
29秒前
30秒前
香蕉觅云应助Yy采纳,获得30
30秒前
ww完成签到,获得积分10
30秒前
我是你宇哥21完成签到,获得积分10
31秒前
付传奎发布了新的文献求助10
31秒前
雨侯发布了新的文献求助10
32秒前
小明完成签到,获得积分10
32秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761