Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO’

人工智能 像素 计算机科学 试验装置 深度学习 RGB颜色模型 树(集合论) 集合(抽象数据类型) 标杆管理 帧速率 果园 计算机视觉 数学 园艺 业务 营销 数学分析 生物 程序设计语言
作者
Anand Koirala,Kerry B. Walsh,Z. Wang,Cheryl McCarthy
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:20 (6): 1107-1135 被引量:334
标识
DOI:10.1007/s11119-019-09642-0
摘要

The performance of six existing deep learning architectures were compared for the task of detection of mango fruit in images of tree canopies. Images of trees (n = 1 515) from across five orchards were acquired at night using a 5 Mega-pixel RGB digital camera and 720 W of LED flood lighting in a rig mounted on a farm utility vehicle operating at 6 km/h. The two stage deep learning architectures of Faster R-CNN(VGG) and Faster R-CNN(ZF), and the single stage techniques YOLOv3, YOLOv2, YOLOv2(tiny) and SSD were trained both with original resolution and 512 × 512 pixel versions of 1 300 training tiles, while YOLOv3 was run only with 512 × 512 pixel images, giving a total of eleven models. A new architecture was also developed, based on features of YOLOv3 and YOLOv2(tiny), on the design criteria of accuracy and speed for the current application. This architecture, termed ‘MangoYOLO’, was trained using: (i) the 1 300 tile training set, (ii) the COCO dataset before training on the mango training set, and (iii) a daytime image training set of a previous publication, to create the MangoYOLO models ‘s’, ‘pt’ and ‘bu’, respectively. Average Precision plateaued with use of around 400 training tiles. MangoYOLO(pt) achieved a F1 score of 0.968 and Average Precision of 0.983 on a test set independent of the training set, outperforming other algorithms, with a detection speed of 8 ms per 512 × 512 pixel image tile while using just 833 Mb GPU memory per image (on a NVIDIA GeForce GTX 1070 Ti GPU) used for in-field application. The MangoYOLO model also outperformed other models in processing of full images, requiring just 70 ms per image (2 048 × 2 048 pixels) (i.e., capable of processing ~ 14 fps) with use of 4 417 Mb of GPU memory. The model was robust in use with images of other orchards, cultivars and lighting conditions. MangoYOLO(bu) achieved a F1 score of 0.89 on a day-time mango image dataset. With use of a correction factor estimated from the ratio of human count of fruit in images of the two sides of sample trees per orchard and a hand harvest count of all fruit on those trees, MangoYOLO(pt) achieved orchard fruit load estimates of between 4.6 and 15.2% of packhouse fruit counts for the five orchards considered. The labelled images (1 300 training, 130 validation and 300 test) of this study are available for comparative studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴博文完成签到,获得积分20
1秒前
ZeroL完成签到 ,获得积分10
1秒前
knight发布了新的文献求助10
2秒前
2秒前
谢大喵发布了新的文献求助10
3秒前
Lny应助xdf采纳,获得10
4秒前
稳重的芹菜完成签到,获得积分20
4秒前
kira发布了新的文献求助10
4秒前
Ava应助yyi1采纳,获得10
4秒前
吴博文发布了新的文献求助10
5秒前
顾矜应助Zzzz采纳,获得10
5秒前
烟花应助深海soda采纳,获得10
6秒前
伶俐鲂完成签到,获得积分10
6秒前
6秒前
6秒前
bkagyin应助111采纳,获得10
7秒前
7秒前
8秒前
8秒前
knight完成签到,获得积分10
9秒前
激情的梦安完成签到,获得积分10
9秒前
9秒前
无语的仰完成签到,获得积分10
9秒前
无心客应助科研通管家采纳,获得10
9秒前
伶俐鲂发布了新的文献求助10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
张张飞发布了新的文献求助10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
盏盏应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
竹筏过海应助科研通管家采纳,获得30
10秒前
yang发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318176
求助须知:如何正确求助?哪些是违规求助? 4460399
关于积分的说明 13878616
捐赠科研通 4350829
什么是DOI,文献DOI怎么找? 2389556
邀请新用户注册赠送积分活动 1383649
关于科研通互助平台的介绍 1353137