A survey on Image Data Augmentation for Deep Learning

计算机科学 过度拟合 深度学习 人工智能 机器学习 大数据 人工神经网络 学习迁移 卷积神经网络 水准点(测量) 数据科学 数据挖掘 大地测量学 地理
作者
Connor Shorten,Taghi M. Khoshgoftaar
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:6 (1) 被引量:9248
标识
DOI:10.1186/s40537-019-0197-0
摘要

Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强白凝完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
淡然丹妗完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
小丁同学发布了新的文献求助10
5秒前
6秒前
shunbao完成签到,获得积分10
6秒前
浩天发布了新的文献求助10
6秒前
iufan发布了新的文献求助10
8秒前
Jasper应助健壮的绿凝采纳,获得10
8秒前
丰富的惮发布了新的文献求助10
10秒前
10秒前
HUMBLE完成签到,获得积分10
10秒前
10秒前
shunbaopan完成签到,获得积分10
12秒前
激动的哈密瓜完成签到,获得积分10
12秒前
pangkuan完成签到,获得积分10
13秒前
meng发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
wanhe发布了新的文献求助10
14秒前
充电宝应助嬴渠梁采纳,获得10
14秒前
影子发布了新的文献求助10
16秒前
丰知然应助啊啊啊啊采纳,获得10
16秒前
李智点发布了新的文献求助20
16秒前
CiCi发布了新的文献求助10
16秒前
18秒前
缓慢洋葱完成签到 ,获得积分10
18秒前
欢喜牛排发布了新的文献求助10
18秒前
冷傲老头完成签到,获得积分10
19秒前
sunnyfriend完成签到,获得积分10
19秒前
Dolo_Duan发布了新的文献求助10
19秒前
隐形元绿发布了新的文献求助10
20秒前
20秒前
正念完成签到,获得积分10
22秒前
Naomi-yu完成签到,获得积分10
22秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888673
求助须知:如何正确求助?哪些是违规求助? 3431027
关于积分的说明 10772227
捐赠科研通 3156037
什么是DOI,文献DOI怎么找? 1742835
邀请新用户注册赠送积分活动 841413
科研通“疑难数据库(出版商)”最低求助积分说明 785917