Sensitization of silicon by singlet exciton fission in tetracene

四烯 单重态裂变 激子 单重态 半导体 材料科学 原子物理学 化学 激发态 光电子学 光化学 凝聚态物理 物理
作者
Markus Einzinger,Tony Wu,Julia F. Kompalla,Hannah L. Smith,Collin F. Perkinson,Lea Nienhaus,Sarah Wieghold,Daniel N. Congreve,Antoine Kahn,Moungi G. Bawendi,Marc A. Baldo
出处
期刊:Nature [Nature Portfolio]
卷期号:571 (7763): 90-94 被引量:281
标识
DOI:10.1038/s41586-019-1339-4
摘要

Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3–5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6–8. When the triplet excitons are transferred to silicon they create additional electron–hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate. A silicon and tetracene solar cell employing singlet fission uses an eight-angstrom-thick hafnium oxynitride interlayer to promote efficient triplet transfer, increasing the efficiency of the cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张无忌完成签到,获得积分10
刚刚
科研通AI5应助panxue采纳,获得10
刚刚
1秒前
1秒前
1秒前
Owen应助ll采纳,获得10
1秒前
le完成签到,获得积分10
2秒前
Cain0807完成签到,获得积分10
2秒前
2秒前
2秒前
五月发布了新的文献求助10
2秒前
3秒前
3秒前
Echo完成签到,获得积分10
3秒前
3秒前
小龙完成签到,获得积分10
4秒前
4秒前
山260完成签到 ,获得积分10
4秒前
Lu发布了新的文献求助10
5秒前
5秒前
EvenCai发布了新的文献求助10
6秒前
6秒前
Re完成签到,获得积分10
6秒前
Raine发布了新的文献求助10
6秒前
Arthas发布了新的文献求助10
6秒前
93577发布了新的文献求助10
7秒前
Echo发布了新的文献求助10
7秒前
YDY发布了新的文献求助10
7秒前
8秒前
8秒前
852应助竹外桃花采纳,获得10
9秒前
10秒前
开朗又菱发布了新的文献求助10
10秒前
液膜振动完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
摸鱼的小y完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4521838
求助须知:如何正确求助?哪些是违规求助? 3963676
关于积分的说明 12285262
捐赠科研通 3627318
什么是DOI,文献DOI怎么找? 1996219
邀请新用户注册赠送积分活动 1032782
科研通“疑难数据库(出版商)”最低求助积分说明 922662