Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours

生殖细胞 病理 细菌 医学 生物 细胞生物学 遗传学 基因
作者
Nina Linder,Jenny C. Taylor,Richard Colling,Robert Pell,Edward Alveyn,Johnson Joseph,Andrew Protheroe,Mikael Lundin,Johan Lundin,Clare Verrill
出处
期刊:Journal of Clinical Pathology [BMJ]
卷期号:72 (2): 157-164 被引量:58
标识
DOI:10.1136/jclinpath-2018-205328
摘要

To evaluate if a deep learning algorithm can be trained to identify tumour-infiltrating lymphocytes (TILs) in tissue samples of testicular germ cell tumours and to assess whether the TIL counts correlate with relapse status of the patient.TILs were manually annotated in 259 tumour regions from 28 whole-slide images (WSIs) of H&E-stained tissue samples. A deep learning algorithm was trained on half of the regions and tested on the other half. The algorithm was further applied to larger areas of tumour WSIs from 89 patients and correlated with clinicopathological data.A correlation coefficient of 0.89 was achieved when comparing the algorithm with the manual TIL count in the test set of images in which TILs were present (n=47). In the WSI regions from the 89 patient samples, the median TIL density was 1009/mm2. In seminomas, none of the relapsed patients belonged to the highest TIL density tertile (>2011/mm2). TIL quantifications performed visually by three pathologists on the same tumours were not significantly associated with outcome. The average interobserver agreement between the pathologists when assigning a patient into TIL tertiles was 0.32 (Kappa test) compared with 0.35 between the algorithm and the experts, respectively. A higher TIL density was associated with a lower clinical tumour stage, seminoma histology and lack of lymphovascular invasion.Deep learning-based image analysis can be used for detecting TILs in testicular germ cell cancer more objectively and it has potential for use as a prognostic marker for disease relapse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
2秒前
Candy应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得150
2秒前
2秒前
2秒前
东南行胜发布了新的文献求助30
3秒前
4秒前
8秒前
8秒前
YCD应助开心的澜采纳,获得10
9秒前
zhan发布了新的文献求助100
9秒前
未完成发布了新的文献求助30
9秒前
9秒前
科研通AI2S应助Stephen采纳,获得10
9秒前
科研通AI2S应助Stephen采纳,获得10
9秒前
9秒前
赘婿应助九九采纳,获得10
11秒前
12秒前
canjian1943完成签到,获得积分10
13秒前
elous发布了新的文献求助10
14秒前
sy发布了新的文献求助10
14秒前
canjian1943发布了新的文献求助10
16秒前
20秒前
rye227应助focco采纳,获得30
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366