Prediction of surface roughness in extrusion-based additive manufacturing with machine learning

表面粗糙度 熔丝制造 预测建模 热电偶 机器学习 计算机科学 表面光洁度 汽车工业 减色 机械工程 人工智能 3D打印 材料科学 工程类 复合材料 艺术 航空航天工程 视觉艺术
作者
Zhixiong Li,Ziyang Zhang,Junchuan Shi,Dazhong Wu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:57: 488-495 被引量:338
标识
DOI:10.1016/j.rcim.2019.01.004
摘要

Additive manufacturing (AM), also known as 3D printing, has been increasingly adopted in the aerospace, automotive, energy, and healthcare industries over the past few years. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is surface integrity. To improve the surface integrity of additively manufactured parts, a data-driven predictive modeling approach to predicting surface roughness in AM is introduced. Multiple sensors of different types, including thermocouples, infrared temperature sensors, and accelerometers, are used to collect temperature and vibration data. An ensemble learning algorithm is introduced to train the predictive model of surface roughness. Features in the time and frequency domains are extracted from sensor-based condition monitoring data. A subset of these features is selected to improve computational efficiency and prediction accuracy. The predictive model is validated using the condition monitoring data collected from a set of AM tests conducted on a fused filament fabrication (FFF) machine. Experimental results have shown that the proposed predictive modeling approach is capable of predicting the surface roughness of 3D printed components with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000应助缓慢的如波采纳,获得30
3秒前
王小新完成签到,获得积分10
5秒前
xx发布了新的文献求助10
5秒前
淡定的半梦完成签到 ,获得积分20
5秒前
未来完成签到,获得积分10
7秒前
欣喜的未来完成签到,获得积分20
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Li应助科研通管家采纳,获得10
10秒前
大腚疯猪应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
10秒前
yyryyrr发布了新的文献求助10
12秒前
hilknk完成签到,获得积分10
14秒前
15秒前
畅快的小兔子完成签到,获得积分10
16秒前
Orange应助xx采纳,获得10
17秒前
杨杨杨发布了新的文献求助200
19秒前
20秒前
某只橘猫君完成签到,获得积分10
21秒前
蔓越莓完成签到 ,获得积分10
22秒前
脑洞疼应助畅快的小兔子采纳,获得10
22秒前
23秒前
23秒前
25秒前
Nolan完成签到,获得积分10
26秒前
惠向雁完成签到,获得积分10
28秒前
28秒前
江夏完成签到 ,获得积分10
29秒前
running发布了新的文献求助10
29秒前
xxxqqq完成签到,获得积分10
33秒前
丘比特应助Lz0330采纳,获得10
34秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843