超级电容器
材料科学
电容
氧化物
镍
氧化钴
氧化铜
介孔材料
电化学
化学工程
储能
氧化镍
钴
比能量
制作
功率密度
铜
氧化铈
电极
冶金
化学
催化作用
功率(物理)
替代医学
物理化学
病理
工程类
物理
医学
量子力学
生物化学
作者
Lopamudra Halder,Anirban Maitra,Amit Kumar Das,Ranadip Bera,Sumanta Kumar Karan,Sarbaranjan Paria,Aswini Bera,Suman Kumar,Bhanu Bhusan Khatua
标识
DOI:10.1021/acsaelm.8b00038
摘要
We demonstrate a cost-effective synthesis of 3D quaternary copper–nickel–cerium–cobalt oxide (Cu–Ni–Ce–Co oxide) through a one-step hydrothermal protocol followed by a heat treatment process. The mesoporous Cu–Ni–Ce–Co oxide (with pore diameter 4.34 nm) shows a higher specific surface area (86.9 m2 g–1). The as-synthesized quaternary oxide provides an ultrahigh specific capacitance of 2696 F g–1 at 1 A g–1 along with a moderate cycle stability of 86.5% after 3000 charge–discharge cycles. Furthermore, an asymmetric supercapacitor (ASC) was established by assembling Cu–Ni–Ce–Co oxide and graphene nanoplatelets (GNP) as positive and negative electrode materials, respectively, and the supercapacitor performances were executed thoroughly. The ASC delivers a remarkable energy density of ≈51 Wh kg–1 at a power density of 581.9 W kg–1 together with long-term cyclic stability (92% specific capacitance retention after 3000 cycles). The compositional and morphological features together with superior electrochemical properties can make it advantageous for practical use in energy and power applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI