Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis

医学 急性胰腺炎 人工神经网络 人工智能 重症监护医学 内科学 计算机科学
作者
Yang Fei,Kun Gao,Weiqin Li
出处
期刊:Pancreatology [Elsevier BV]
卷期号:18 (8): 892-899 被引量:45
标识
DOI:10.1016/j.pan.2018.09.007
摘要

The aim of this study is to predict the risk of severe acute pancreatitis (SAP) associated with acute lung injury (ALI) by artificial neural networks (ANNs) model.The ANNs and logistic regression model were constructed using clinical and laboratory data of 217 SAP patients. The models were first trained on 152 randomly chosen patients, validated and tested on the 33 patients and 32 patients respectively. Statistical indices were used to evaluate the value of the forecast in two models.The training set, validation set and test set were not significantly different for any of the 13 variables. After training, the back propagation network retained excellent pattern recognition ability. When the ANNs model was applied to the test set, it revealed a sensitivity of 87.5%, specificity of 83.3%. The accuracy was 84.43%. Significant differences could be found between ANNs model and logistic regression model in these parameter. When ANNs model was used to identify ALI, the area under receiver operating characteristic curve was 0.859 ± 0.048, which demonstrated the better overall properties than logistic regression modeling (AUC = 0.701 + 0.041) (95% CI: 0.664-0.857). Meanwhile, pancreatic necrosis rate, lactic dehydrogenase and oxyhemoglobin saturation were the important factors among all thirteen independent variable for ALI.The ANNs model was a valuable tool in dealing with the clinical risk prediction problem of ALI following to SAP. In addition, our approach can extract informative risk factors of ALI via the ANNs model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助景行行止采纳,获得10
1秒前
1秒前
1秒前
Lancent完成签到,获得积分10
1秒前
啦熊发布了新的文献求助10
2秒前
2秒前
今天喝咖啡吗完成签到,获得积分10
2秒前
GR发布了新的文献求助10
3秒前
小叮当完成签到,获得积分10
4秒前
Stella完成签到,获得积分10
4秒前
4秒前
养虎人完成签到,获得积分20
5秒前
留胡子的火完成签到,获得积分10
5秒前
杨一发布了新的文献求助10
5秒前
自觉的老九完成签到,获得积分20
5秒前
SYLH应助yciDo采纳,获得10
6秒前
Hollow发布了新的文献求助30
6秒前
咚咚糖发布了新的文献求助10
7秒前
7秒前
kassy发布了新的文献求助10
7秒前
Lmyznl完成签到 ,获得积分10
7秒前
Silence发布了新的文献求助10
7秒前
8秒前
大熊猫寄生虫完成签到,获得积分10
8秒前
善学以致用应助范啦啦啦采纳,获得10
8秒前
高先春发布了新的文献求助10
8秒前
木月子完成签到,获得积分10
9秒前
科研通AI2S应助zm采纳,获得10
9秒前
9秒前
李健的小迷弟应助MHX采纳,获得10
10秒前
小鹿完成签到,获得积分10
11秒前
11秒前
gujian发布了新的文献求助10
11秒前
12秒前
12秒前
慕青应助Cici采纳,获得10
12秒前
艺高人胆大鸡腿完成签到 ,获得积分10
12秒前
13秒前
轻松凡完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188