Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis

医学 急性胰腺炎 人工神经网络 人工智能 重症监护医学 内科学 计算机科学
作者
Yang Fei,Kun Gao,Weiqin Li
出处
期刊:Pancreatology [Elsevier]
卷期号:18 (8): 892-899 被引量:45
标识
DOI:10.1016/j.pan.2018.09.007
摘要

The aim of this study is to predict the risk of severe acute pancreatitis (SAP) associated with acute lung injury (ALI) by artificial neural networks (ANNs) model.The ANNs and logistic regression model were constructed using clinical and laboratory data of 217 SAP patients. The models were first trained on 152 randomly chosen patients, validated and tested on the 33 patients and 32 patients respectively. Statistical indices were used to evaluate the value of the forecast in two models.The training set, validation set and test set were not significantly different for any of the 13 variables. After training, the back propagation network retained excellent pattern recognition ability. When the ANNs model was applied to the test set, it revealed a sensitivity of 87.5%, specificity of 83.3%. The accuracy was 84.43%. Significant differences could be found between ANNs model and logistic regression model in these parameter. When ANNs model was used to identify ALI, the area under receiver operating characteristic curve was 0.859 ± 0.048, which demonstrated the better overall properties than logistic regression modeling (AUC = 0.701 + 0.041) (95% CI: 0.664-0.857). Meanwhile, pancreatic necrosis rate, lactic dehydrogenase and oxyhemoglobin saturation were the important factors among all thirteen independent variable for ALI.The ANNs model was a valuable tool in dealing with the clinical risk prediction problem of ALI following to SAP. In addition, our approach can extract informative risk factors of ALI via the ANNs model.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dhhdnd完成签到 ,获得积分10
刚刚
2秒前
3秒前
kelakola完成签到,获得积分10
3秒前
爆米花应助null采纳,获得10
4秒前
heavenhorse发布了新的文献求助30
6秒前
彭于晏应助XJH采纳,获得10
7秒前
科研喵发布了新的文献求助10
8秒前
9秒前
科研通AI6.2应助圆中无点采纳,获得10
11秒前
Haley完成签到,获得积分10
13秒前
Hejunkang完成签到,获得积分10
16秒前
Chem_researcher完成签到,获得积分10
18秒前
Yy完成签到 ,获得积分10
21秒前
爱听歌的冷风完成签到,获得积分10
21秒前
323431完成签到,获得积分10
27秒前
27秒前
33秒前
fedehe完成签到 ,获得积分10
34秒前
芳蔼完成签到 ,获得积分10
35秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
TheDing完成签到,获得积分10
38秒前
38秒前
38秒前
39秒前
39秒前
芳蔼发布了新的文献求助10
39秒前
烟花应助科研通管家采纳,获得10
39秒前
倾尽应助科研通管家采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
39秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851919
求助须知:如何正确求助?哪些是违规求助? 6274343
关于积分的说明 15627389
捐赠科研通 4967824
什么是DOI,文献DOI怎么找? 2678804
邀请新用户注册赠送积分活动 1623003
关于科研通互助平台的介绍 1579453