Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning

学习迁移 卷积神经网络 深度学习 人工智能 计算机科学 机器学习 模式识别(心理学) 图像(数学) 医学影像学
作者
Xinzhuo Zhao,Shouliang Qi,Baihua Zhang,He Ma,Wei Qian,Yudong Yao,Jianjun Sun
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:27 (4): 615-629 被引量:55
标识
DOI:10.3233/xst-180490
摘要

Deep learning has made spectacular achievements in analysing natural images, but it faces challenges for medical applications partly due to inadequate images.Aiming to classify malignant and benign pulmonary nodules using CT images, we explore different strategies to utilize the state-of-the-art deep convolutional neural networks (CNN).Experiments are conducted using the Lung Image Database Consortium image collection (LIDC-IDRI), which is a public database containing 1018 cases. Three strategies are implemented including to 1) modify some state-of-the-art CNN architectures, 2) integrate different CNNs and 3) adopt transfer learning. Totally, 11 deep CNN models are compared using the same dataset.Study demonstrates that, for the model modification scheme, a concise CifarNet performs better than the other modified CNNs with more complex architectures, achieving an area under ROC curve of AUC = 0.90. Integrated CNN models do not significantly improve the classification performance, but the model complexity is reduced. Transfer learning outperforms the other two schemes and ResNet with fine-tuning leads to the best performance with an AUC = 0.94, as well as the sensitivity of 91% and an overall accuracy of 88%.Model modification, model integration, and transfer learning can play important roles to identify and generate optimal deep CNN models in classifying pulmonary nodules based on CT images efficiently. Transfer learning is preferred when applying deep learning to medical imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
激昂的柚子完成签到,获得积分20
1秒前
善学以致用应助HD采纳,获得10
1秒前
2秒前
2秒前
科目三应助牛牛采纳,获得10
2秒前
feifei完成签到,获得积分10
2秒前
2秒前
萱瑄爸爸发布了新的文献求助10
3秒前
在水一方应助以敬山川采纳,获得10
3秒前
feifei发布了新的文献求助10
5秒前
black456完成签到,获得积分10
5秒前
立军完成签到,获得积分10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
温童发布了新的文献求助10
7秒前
LuckyM完成签到 ,获得积分10
8秒前
8秒前
舒心的日记本关注了科研通微信公众号
9秒前
闪闪落雁发布了新的文献求助10
10秒前
ding应助科研通管家采纳,获得10
10秒前
隐形曼青应助初之采纳,获得10
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Aneira应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小聪发布了新的文献求助20
11秒前
12秒前
希望天下0贩的0应助6666采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016122
求助须知:如何正确求助?哪些是违规求助? 4256293
关于积分的说明 13264157
捐赠科研通 4060200
什么是DOI,文献DOI怎么找? 2220658
邀请新用户注册赠送积分活动 1229998
关于科研通互助平台的介绍 1152626