去细胞化
3D生物打印
细胞外基质
组织工程
自愈水凝胶
生物医学工程
肾
生物加工
材料科学
化学
生物
医学
生物化学
内分泌学
高分子化学
作者
Mohamed Ali,Prabha D. Nair,James J. Yoo,Faten Zahran,Anthony Atala,Sang Jin Lee
标识
DOI:10.1002/adhm.201800992
摘要
Abstract 3D bioprinting strategies in tissue engineering aim to fabricate clinically applicable tissue constructs that can replace the damaged or diseased tissues and organs. One of the main prerequisites in 3D bioprinting is finding an appropriate bioink that provides a tissue‐specific microenvironment supporting the cellular growth and maturation. In this respect, decellularized extracellular matrix (dECM)‐derived hydrogels have been considered as bioinks for the cell‐based bioprinting due to their capability to inherit the intrinsic cues from native ECM. Herein, a photo‐crosslinkable kidney ECM‐derived bioink (KdECMMA) is developed that could provide a kidney‐specific microenvironment for renal tissue bioprinting. Porcine whole kidneys are decellularized through a perfusion method, dissolved in an acid solution, and chemically modified by methacrylation. A KdECMMA‐based bioink is formulated and evaluated for rheological properties and printability for the printing process. The results show that the bioprinted human kidney cells in the KdECMMA bioink are highly viable and mature with time. Moreover, the bioprinted renal constructs exhibit the structural and functional characteristics of the native renal tissue. The potential of the tissue‐specific ECM‐derived bioink is demonstrated for cell‐based bioprinting that could enhance the cellular maturation and eventually tissue formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI