劈形算符
有界函数
独特性
欧米茄
领域(数学分析)
Neumann边界条件
简并能级
同种类的
边界(拓扑)
抛物型偏微分方程
物理
组合数学
弱解
数学物理
数学
数学分析
偏微分方程
量子力学
摘要
In a bounded domain $\Omega\subset\mathbb{R}^n$, where $n\ge 3$, we consider the quasilinear parabolic-parabolic Keller-Segel system \begin{document}$\begin{equation*}\begin{cases}u_t = \nabla\cdot({D(u)\nabla u+u\nabla v}) \;\;\; &\text{in}\ \Omega\times(0,\infty)\\v_t = \Delta v-v+u &\text{in}\ \Omega\times(0,\infty)\end{cases}\end{equation*}$ \end{document} with homogeneous Neumann boundary conditions. We will find that the condition $D(u)\geq Cu^{m-1}$ suffices to prove the uniqueness and global existence of solutions along with their boundedness if $D(0)>0$ and $m>1+\frac{(n-2)(n-1)}{n^2}$ which is a very different result from what we know about the same system with nonnegative sensitivity. In the case of degenerate diffusion ($D(0) = 0$) and for the same parameters, locally bounded global weak solutions will be established.
科研通智能强力驱动
Strongly Powered by AbleSci AI