亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chemically Induced Degradation of MALT1 to Treat B-Cell Lymphomas

癌症研究 泛素连接酶 小脑 生物 细胞生物学 化学 泛素 生物化学 基因
作者
Lorena Fontán,John M. Hatcher,David A. Scott,Qi Qiao,Ilkay Us,Guangyan Du,Matthew Durant,Jimmy Wilson,Hao Wu,Nathanael S. Gray,Ari Melnick
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 2073-2073 被引量:5
标识
DOI:10.1182/blood-2019-130666
摘要

MALT1 is a protease and scaffold protein involved in signal transduction to NF-κB downstream of several receptors including B-cell (BCR) and T-cell receptors (TCR). MALT1 is aberrantly activated in ABC DLBCL by mutations in upstream genes in the BCR and TLR pathways (CD79A/B, CARD11, MYD88) and is critical for proliferation and survival. Recent studies by our lab, and others, identified inhibitors of MALT1 protease activity that revealed MALT1 is therapeutically targetable in ABC DLBCL. MALT1 is also essential for CLL, MCL and certain solid tumors (most notably lung cancer and glioblastoma). A first-in-man clinical trial recently started to evaluate MALT1 protease inhibition in B-cell non-Hodgkin's lymphomas. However, chronic inactivation of MALT1 protease activity suppressed T regulatory cells in vivo in protease dead murine models causing fast progressing autoimmune disease and death. Loss of MALT1, on the other hand, has also potent anti-tumoral effects but does not lead to autoimmunity in murine models. These findings prompted us to study alternative MALT1 targeting therapeutic approaches aimed to target its scaffolding activity. We have developed a series of proteolytic targeting chimera (PROTAC) compounds against MALT1. PROTACs are bifunctional compounds that induce selective proteolysis by targeting proteins of interest to E3 ligases for directed proteosomal degradation. Our MALT1 PROTACs are based on an allosteric MALT1 inhibitor that binds reversibly to MALT1 and fused to a Cereblon (CRBN) binding moiety, with the intent of bringing the CRBN E3 ligase complex in close proximity of MALT1 and promoting its ubiquitination and proteasomal degradation. We performed structure-activity relationship analysis and studied: 1) three linker attachment points in the MALT1 binding moiety and evaluated their MALT1 enzymatic inhibitory activity and binding to MALT1; 2) the effect of distinct linker length and polarity in MALT1 degradation and, 3) compared the effect of Lenalidomide, Pomalidomide and CC-220, which have increasing CRBN affinities, as alternative CRBN-binding moieties. Six out of eighteen compounds presented higher than 50% MALT1 degradation at 1 μM compared to vehicle treated cells in a MALT1-dependent cell line, OCI-Ly3. The parental allosteric compound, on the other hand, did not affect MALT1 levels compared to vehicle treated cells and was used as a negative control for MALT1 degradation. Compounds that actively degraded MALT1 over 50% preserved selective killing of ABC DLBCL over GCB DLBCL, same as the parental MALT1 inhibitor. GI50 of active compounds in OCI-Ly3 was 2-6 μM while it was greater than 20 μM for the MALT1-independent cell line OCI-Ly1. We chose two of our most effective and selective compounds to validate MALT1 PROTACs mechanism of action. Unlike their parental MALT1 targeting allosteric compound, MALT1 PROTACs effectively degraded MALT1 in a CRBN-dependent manner as shown in a 293T-CRBN knockout cell line or in OCI-Ly3 cells by treatment with 1 μM MLN4924. MLN4924 inhibits NEDD8-activating enzyme which is essential for the CRBN complex to function. Notably, MALT1 PROTACs degraded MALT1 in OCI-Ly1 cells (FC=-2.5) and Raji cells (FC=-1.7), where MALT1 is inactive. MALT1 degradation by PROTACs was not affected by activation in Raji cells, since PMA/ionomycin treatment did not alter the effect of MALT1 PROTACs on MALT1 levels. Therefore, MALT1 PROTACs can degrade MALT1 independent of its activation state. Moreover, unlike MALT1 protease inhibitors, MALT1 PROTACs potently suppress NF-κB activation, which is dependent on MALT1 scaffolding activity, as assessed by WB of phopho and total IκB in ABC DLBCL cell lines. Our data shows that MALT1 PROTACs could be excellent agents for the treatment of ABC DLBCL and other lymphomas, providing an alternative to enzymatic targeting that might prove useful to avoid autoimmunity or overcome resistance mechanisms. Disclosures Gray: Gatekeeper, Syros, Petra, C4, B2S and Soltego.: Equity Ownership; Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Her2llc, Deerfield and Sanofi.: Equity Ownership, Research Funding. Melnick: Constellation: Consultancy; Janssen: Research Funding; Epizyme: Consultancy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
情怀应助科研通管家采纳,获得10
35秒前
37秒前
48秒前
1分钟前
1分钟前
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
我不秃头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
孤独的大灰狼完成签到 ,获得积分10
1分钟前
1分钟前
机灵的衬衫完成签到 ,获得积分10
2分钟前
瘦瘦的枫叶完成签到 ,获得积分10
2分钟前
牛牛完成签到 ,获得积分10
2分钟前
清脆愫完成签到 ,获得积分10
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
诺贝尔候选人完成签到 ,获得积分10
3分钟前
3分钟前
謓言完成签到 ,获得积分20
3分钟前
4分钟前
4分钟前
4分钟前
Galri完成签到 ,获得积分10
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053749
求助须知:如何正确求助?哪些是违规求助? 3591873
关于积分的说明 11413645
捐赠科研通 3318160
什么是DOI,文献DOI怎么找? 1824921
邀请新用户注册赠送积分活动 896270
科研通“疑难数据库(出版商)”最低求助积分说明 817418