Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach

遥感 水色仪 环境科学 多光谱图像 均方误差 高光谱成像 叶绿素a 计算机科学 地质学 数学 统计 浮游植物 生态学 植物 生物 营养物
作者
Nima Pahlevan,Brandon Smith,John F. Schalles,Caren Binding,Zhigang Cao,Ronghua Ma,Krista Alikas,Kersti Kangro,Daniela Gurlin,Nguyễn Thị Thu Hà,Bunkei Matsushita,Wesley J. Moses,Steven Greb,Moritz K. Lehmann,Michael Ondrusek,Natascha Oppelt,Richard P. Stumpf
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:240: 111604-111604 被引量:456
标识
DOI:10.1016/j.rse.2019.111604
摘要

Consistent, cross-mission retrievals of near-surface concentration of chlorophyll-a (Chla) in various aquatic ecosystems with broad ranges of trophic levels have long been a complex undertaking. Here, we introduce a machine-learning model, the Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in inland and coastal waters. The model is trained and validated using a sizeable database of co-located Chla measurements (n = 2943) and in situ hyperspectral radiometric data resampled to simulate the Multispectral Instrument (MSI) and the Ocean and Land Color Imager (OLCI) onboard Sentinel-2A/B and Sentinel-3A/B, respectively. Our performance evaluations of the model, via two-thirds of the in situ dataset with Chla ranging from 0.2 to 1209 mg/m3 and a mean Chla of 21.7 mg/m3, suggest significant improvements in Chla retrievals. For both MSI and OLCI, the mean absolute logarithmic error (MAE) and logarithmic bias (Bias) across the entire range reduced by 40–60%, whereas the root mean squared logarithmic error (RMSLE) and the median absolute percentage error (MAPE) improved two-to-three times over those from the state-of-the-art algorithms. Using independent Chla matchups (n < 800) for Sentinel-2A/B and -3A, we show that the MDN model provides most accurate products from recorded images processed via three different atmospheric correction processors, namely the SeaWiFS Data Analysis System (SeaDAS), POLYMER, and ACOLITE, though the model is found to be sensitive to uncertainties in remote-sensing reflectance products. This manuscript serves as a preliminary study on a machine-learning algorithm with potential utility in seamless construction of Chla data records in inland and coastal waters, i.e., harmonized, comparable products via a single algorithm for MSI and OLCI data processing. The model performance is anticipated to enhance by improving the global representativeness of the training data as well as simultaneous retrievals of multiple optically active components of the water column.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xinxin完成签到,获得积分10
刚刚
田様应助糖果不甜采纳,获得10
刚刚
1秒前
1秒前
1秒前
希望天下0贩的0应助XIN采纳,获得10
1秒前
111完成签到 ,获得积分10
2秒前
SEANFLY发布了新的文献求助10
2秒前
星辰发布了新的文献求助10
2秒前
王晖发布了新的文献求助10
2秒前
豆豆哥完成签到 ,获得积分10
3秒前
uuuu发布了新的文献求助10
3秒前
007完成签到,获得积分10
3秒前
3秒前
程老六发布了新的文献求助10
3秒前
蓝胖胖完成签到 ,获得积分10
4秒前
蓝莓完成签到 ,获得积分10
4秒前
遇见发布了新的文献求助10
4秒前
顺心飞绿完成签到 ,获得积分10
4秒前
5秒前
林珍发布了新的文献求助10
5秒前
5秒前
树德完成签到,获得积分10
5秒前
天天快乐应助玉鱼儿采纳,获得10
6秒前
6秒前
zyy完成签到,获得积分20
6秒前
Rakuen42发布了新的文献求助10
7秒前
7秒前
顾矜应助喜洋羊采纳,获得10
7秒前
研友_VZG7GZ应助cqq采纳,获得10
7秒前
彭于晏应助Jan采纳,获得10
7秒前
Lemon发布了新的文献求助10
7秒前
梅溪湖的提词器完成签到,获得积分10
8秒前
zhouzhou完成签到,获得积分10
8秒前
小菜瓜完成签到,获得积分10
8秒前
淡然柚子发布了新的文献求助10
9秒前
10秒前
顾矜应助时荒采纳,获得10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396796
求助须知:如何正确求助?哪些是违规求助? 4517121
关于积分的说明 14062479
捐赠科研通 4428983
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424661
关于科研通互助平台的介绍 1403657