亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach

遥感 水色仪 环境科学 多光谱图像 均方误差 高光谱成像 叶绿素a 计算机科学 地质学 数学 统计 浮游植物 生态学 植物 生物 营养物
作者
Nima Pahlevan,Brandon Smith,John F. Schalles,Caren Binding,Zhigang Cao,Ronghua Ma,Krista Alikas,Kersti Kangro,Daniela Gurlin,Nguyễn Thị Thu Hà,Bunkei Matsushita,Wesley J. Moses,Steven Greb,Moritz K. Lehmann,Michael Ondrusek,Natascha Oppelt,Richard P. Stumpf
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:240: 111604-111604 被引量:456
标识
DOI:10.1016/j.rse.2019.111604
摘要

Consistent, cross-mission retrievals of near-surface concentration of chlorophyll-a (Chla) in various aquatic ecosystems with broad ranges of trophic levels have long been a complex undertaking. Here, we introduce a machine-learning model, the Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in inland and coastal waters. The model is trained and validated using a sizeable database of co-located Chla measurements (n = 2943) and in situ hyperspectral radiometric data resampled to simulate the Multispectral Instrument (MSI) and the Ocean and Land Color Imager (OLCI) onboard Sentinel-2A/B and Sentinel-3A/B, respectively. Our performance evaluations of the model, via two-thirds of the in situ dataset with Chla ranging from 0.2 to 1209 mg/m3 and a mean Chla of 21.7 mg/m3, suggest significant improvements in Chla retrievals. For both MSI and OLCI, the mean absolute logarithmic error (MAE) and logarithmic bias (Bias) across the entire range reduced by 40–60%, whereas the root mean squared logarithmic error (RMSLE) and the median absolute percentage error (MAPE) improved two-to-three times over those from the state-of-the-art algorithms. Using independent Chla matchups (n < 800) for Sentinel-2A/B and -3A, we show that the MDN model provides most accurate products from recorded images processed via three different atmospheric correction processors, namely the SeaWiFS Data Analysis System (SeaDAS), POLYMER, and ACOLITE, though the model is found to be sensitive to uncertainties in remote-sensing reflectance products. This manuscript serves as a preliminary study on a machine-learning algorithm with potential utility in seamless construction of Chla data records in inland and coastal waters, i.e., harmonized, comparable products via a single algorithm for MSI and OLCI data processing. The model performance is anticipated to enhance by improving the global representativeness of the training data as well as simultaneous retrievals of multiple optically active components of the water column.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
taffysl完成签到,获得积分10
5秒前
DL发布了新的文献求助10
8秒前
搜集达人应助budingman采纳,获得10
8秒前
安青兰完成签到 ,获得积分10
10秒前
卷毛维安完成签到 ,获得积分10
21秒前
CodeCraft应助DL采纳,获得10
27秒前
顾矜应助chowder采纳,获得30
28秒前
34秒前
stoss发布了新的文献求助10
40秒前
48秒前
budingman发布了新的文献求助10
50秒前
budingman发布了新的文献求助10
50秒前
budingman发布了新的文献求助10
50秒前
budingman发布了新的文献求助10
50秒前
budingman发布了新的文献求助50
51秒前
budingman发布了新的文献求助10
51秒前
budingman发布了新的文献求助30
51秒前
budingman发布了新的文献求助10
54秒前
56秒前
chowder发布了新的文献求助30
1分钟前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小李发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
糕冷草莓完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
abull完成签到,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
obedVL完成签到,获得积分10
2分钟前
2分钟前
传奇3应助无情的琳采纳,获得10
2分钟前
2分钟前
立夏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
无情的琳发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235