细菌纤维素
材料科学
纳米纤维
复合数
纤维素
弹性模量
模数
纳米结构
气凝胶
化学工程
复合材料
纳米技术
纳米复合材料
矿化(土壤科学)
化学
有机化学
工程类
氮气
作者
Zheng Cheng,Zhou Ye,Avi Natan,Yi Ma,Hongyan Li,Yong Chen,Liqiang Wan,Conrado Aparicio,Hongli Zhu
标识
DOI:10.1021/acsami.9b15234
摘要
Bioinspired by the aligned structure and building blocks of bone, this work mineralized the aligned bacterial cellulose (BC) through in situ mineralization using CaCl2 and K2HPO4 solutions. The cellulose nanofibers were aligned by a scalable stretching process. The aligned and mineralized bacterial cellulose (AMBC) homogeneously incorporated hydroxyapatite (HAP) with a high mineral content and exhibited excellent mechanical strength. The ordered 3D structure allowed the AMBC composite to achieve a high elastic modulus and hardness and the development of a nanostructure inspired by natural bone. The AMBC composite exhibited an elastic modulus of 10.91 ± 3.26 GPa and hardness of 0.37 ± 0.18 GPa. Compared with the nonaligned mineralized bacterial cellulose (NMBC) composite with mineralized crystals of HAP randomly distributed into the BC scaffolds, the AMBC composite possessed a 210% higher elastic modulus and 95% higher hardness. The obtained AMBC composite had excellent mechanical properties by mimicking the natural structure of bone, which indicated that the organic BC aerogel with aligned nanofibers was a promising template for biomimetic mineralization.
科研通智能强力驱动
Strongly Powered by AbleSci AI