清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Nomogram Model Predicting Overall Survival and Guiding Clinical Decision in Patients With Glioblastoma Based on the SEER Database

列线图 胶质母细胞瘤 医学 比例危险模型 肿瘤科 内科学 癌症研究
作者
Hongjian Li,Yingya He,Lie-Jun Huang,Hui Luo,Xiao Zhu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:10 被引量:22
标识
DOI:10.3389/fonc.2020.01051
摘要

Background: Patients with glioblastoma have a poor prognosis. We want to develop and validate nomograms for predicting overall survival in patients with glioblastoma. Methods: Data of patients with glioblastoma diagnosed pathologically in the SEER database from 2007 to 2016 were collected by SEER*Stat software. After eliminating invalid and missing clinical information, 3,635 patients (total group) were finally identified and randomly divided into the training group (2,183 cases) and the verification group (1,452 cases). Cox proportional risk regression model was used in the training group, the verification group and the total group to analyze the prognostic factors of patients in the training group, and then the nomogram was constructed. C-indexes and calibration curves were used to evaluate the predictive value of nomogram by internal (training group data) and external validation (verification group data). Results: Cox proportional risk regression model in the training group showed that age, year of diagnosis, laterality, radiation, chemotherapy were all influential factors for prognosis of patients with glioblastoma (P < 0.05) and were all used to construct nomogram as well. The internal and external validation results of nomogram showed that the C-index of the training group was 0.729 [95% CI was (0.715, 0.743)], and the verification group was 0.734 [95% CI was (0.718, 0.750)]. The calibration curves of both groups showed good consistency. Conclusions: The proposed nomogram resulted in accurate prognostic prediction for patients with glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beyond095完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
30秒前
浮游应助科研通管家采纳,获得10
40秒前
王一一完成签到,获得积分10
1分钟前
xdc完成签到,获得积分20
1分钟前
xdc发布了新的文献求助10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
automan完成签到 ,获得积分10
1分钟前
xdc发布了新的文献求助10
1分钟前
爆米花应助xdc采纳,获得10
1分钟前
张wx_100完成签到,获得积分10
1分钟前
2分钟前
xdc发布了新的文献求助10
2分钟前
浮游应助xdc采纳,获得10
2分钟前
2分钟前
聪慧千亦发布了新的文献求助10
2分钟前
聪慧千亦完成签到,获得积分10
2分钟前
小静完成签到 ,获得积分10
2分钟前
智者雨人完成签到 ,获得积分10
2分钟前
3分钟前
xiaoxin发布了新的文献求助10
3分钟前
乐乐应助xiaoxin采纳,获得10
3分钟前
xiaoxin完成签到,获得积分10
3分钟前
nojego完成签到,获得积分10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
自觉香彤完成签到 ,获得积分10
3分钟前
自觉香彤关注了科研通微信公众号
3分钟前
田様应助XIA采纳,获得10
3分钟前
4分钟前
XIA发布了新的文献求助10
4分钟前
4分钟前
yiyayiya发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
V_I_G完成签到 ,获得积分10
5分钟前
Ccc完成签到,获得积分20
5分钟前
5分钟前
avalanche应助Ccc采纳,获得30
5分钟前
无奈的代珊完成签到 ,获得积分10
5分钟前
why完成签到,获得积分10
5分钟前
Something发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463631
求助须知:如何正确求助?哪些是违规求助? 4568187
关于积分的说明 14312580
捐赠科研通 4494275
什么是DOI,文献DOI怎么找? 2462237
邀请新用户注册赠送积分活动 1451134
关于科研通互助平台的介绍 1426544