材料科学
碳纳米管
热电效应
热电发电机
热电材料
铋
纳米技术
热导率
复合材料
复合数
冶金
热力学
物理
作者
Xiaona Chen,Linan Feng,Penglu Yu,Чан Лю,Jinle Lan,Yuanhua Lin,Xiaoping Yang
标识
DOI:10.1021/acsami.0c21396
摘要
Flexible thermoelectric materials and devices have gained wide attention due to their capability to stably and directly convert body heat or industrial waste heat into electric energy. Many research and synthetic methods of flexible high-performance p-type thermoelectric materials have made great progress. However, their counterpart flexible n-type organic thermoelectric materials are seldom studied due to the complex synthesis of conductive polymer and poor stability of n-type materials. In this work, bismuth tellurium (Bi2Te3) nanosheets are in situ grown on single-walled carbon nanotubes (SWCNTs) assisted by poly(vinylpyrrolidone) (PVP). A series of flexible SWCNTs@Bi2Te3 composite films on poly(vinylidene fluoride) (PVDF) membranes are obtained by vacuum-assisted filtration. The high electrical conductivity of 253.9 S/cm, and a corresponding power factor (PF) of 57.8 μW/m·K2 is obtained at 386 K for SWCNTs@Bi2Te3-0.8 film. Moreover, high electrical conductivity retention of 90% can be maintained after a 300-cycle bending test and no obvious attenuation can be detected after being stored in an Ar atmosphere for 9 months, which exhibits good flexibility and excellent stability of the SWCNTs@Bi2Te3 composite films. This work shows a convenient method to fabricate n-type and flexible thermoelectric composite film and further promotes the practical application of n-type flexible thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI