CHARM-Deep: Continuous Human Activity Recognition Model Based on Deep Neural Network Using IMU Sensors of Smartwatch

计算机科学 智能手表 人工智能 惯性测量装置 深度学习 活动识别 人工神经网络 模式识别(心理学) 实时计算 嵌入式系统 可穿戴计算机
作者
Sara Ashry,Tetsuji Ogawa,Walid Gomaa
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (15): 8757-8770 被引量:27
标识
DOI:10.1109/jsen.2020.2985374
摘要

In the present paper, an attempt was made to achieve high-performance continuous human activity recognition (CHAR) using deep neural networks. The present study focuses on recognizing different activities in a continuous stream, which means `back-to-back' consecutive set of activities, from only inertial measurement unit (IMU) sensors mounted on smartwatches. For that purpose, a new dataset called `CHAR-SW', which includes numerous streams of daily activities, was collected using smartwatches, and feature representations and network architectures were designed. Experimental comparisons using our own dataset and public datasets (Aruba and Tulum) have been performed. They demonstrated that cascading bidirectional long short-term memory (Bi-LSTM) with featured data performed well in offline mode from the viewpoints of accuracy, computational time, and storage space required. The input to the Bi-LSTM is a descriptor which composed of a stream of the following features: autocorrelation, median, entropy, and instantaneous frequency. Additionally, a novel technique to operate the CHAR system online was introduced and shown to be effective. Experimental results can be summarized as: the offline CHARM-Deep enhanced the accuracy compared with using raw data or the existing approaches, and it reduced the processing time by 86% at least relative to the time consumed in executing the Bi-LSTM classifier directly on the raw data. It also reduced storage space by approximately 97.77% compared with using raw data. The online evaluation shows that it can recognize activities in real-time with an accuracy of 91%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yau发布了新的文献求助10
刚刚
zzzjh完成签到,获得积分10
刚刚
1秒前
1秒前
june发布了新的文献求助10
1秒前
王晓完成签到,获得积分10
1秒前
xiaomeng发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
mzw发布了新的文献求助10
1秒前
喵喵完成签到 ,获得积分10
1秒前
1秒前
搜集达人应助Brady6采纳,获得10
1秒前
英俊的铭应助小殷采纳,获得10
2秒前
2秒前
2秒前
2秒前
fzzf发布了新的文献求助10
3秒前
3秒前
guozi发布了新的文献求助10
4秒前
高兴发布了新的文献求助10
4秒前
浮游应助科研小贩采纳,获得10
4秒前
对啊完成签到,获得积分20
5秒前
解语花发布了新的文献求助10
5秒前
陶醉的向南完成签到 ,获得积分10
5秒前
wanci应助沉默的星月采纳,获得10
5秒前
DZJ发布了新的文献求助10
6秒前
满意的紫烟完成签到,获得积分10
6秒前
逸风完成签到,获得积分10
6秒前
伊布完成签到,获得积分10
6秒前
畅快的鲂完成签到,获得积分10
6秒前
ashore完成签到,获得积分10
7秒前
eyo发布了新的文献求助10
7秒前
kk发布了新的文献求助10
7秒前
8秒前
诡瞳GT完成签到 ,获得积分10
8秒前
浮游应助七栀采纳,获得10
8秒前
WW发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352