Machine learning to guide the use of adjuvant therapies for breast cancer

概化理论 可解释性 乳腺癌 医学 肿瘤科 癌症 内科学 机器学习 辅助治疗 人工智能 医学物理学 计算机科学 数学 统计
作者
Ahmed M. Alaa,Deepti Gurdasani,Adrian L. Harris,Jem Rashbass,Mihaela van der Schaar
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (8): 716-726 被引量:36
标识
DOI:10.1038/s42256-021-00353-8
摘要

Accurate prediction of the individualized survival benefit of adjuvant therapy is key to making informed therapeutic decisions for patients with early invasive breast cancer. Machine learning technologies can enable accurate prognostication of patient outcomes under different treatment options by modelling complex interactions between risk factors in a data-driven fashion. Here, we use an automated and interpretable machine learning algorithm to develop a breast cancer prognostication and treatment benefit prediction model—Adjutorium—using data from large-scale cohorts of nearly one million women captured in the national cancer registries of the United Kingdom and the United States. We trained and internally validated the Adjutorium model on 395,862 patients from the UK National Cancer Registration and Analysis Service (NCRAS), and then externally validated the model among 571,635 patients from the US Surveillance, Epidemiology, and End Results (SEER) programme. Adjutorium exhibited significantly improved accuracy compared to the major prognostic tool in current clinical use (PREDICT v2.1) in both internal and external validation. Importantly, our model substantially improved accuracy in specific subgroups known to be under-served by existing models. Adjutorium is currently implemented as a web-based decision support tool ( https://vanderschaar-lab.com/adjutorium/ ) to aid decisions on adjuvant therapy in women with early breast cancer, and can be publicly accessed by patients and clinicians worldwide. Methods are available to support clinical decisions regarding adjuvant therapies in breast cancer, but they have limitations in accuracy, generalizability and interpretability. Alaa et al. present an automated machine learning model of breast cancer that predicts patient survival and adjuvant treatment benefit to guide personalized therapeutic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助坚硬的刚地刺采纳,获得10
1秒前
daodaodaodao完成签到,获得积分10
1秒前
1秒前
小耿完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
3秒前
JamesPei应助甜美的惊蛰采纳,获得10
4秒前
4秒前
领导范儿应助anki采纳,获得10
4秒前
香蕉觅云应助Cassie采纳,获得20
4秒前
小秦完成签到,获得积分10
5秒前
5秒前
田様应助stacy采纳,获得10
5秒前
5秒前
6秒前
吴晓曼发布了新的文献求助10
6秒前
JamesPei应助小纸人采纳,获得10
6秒前
jinyi发布了新的文献求助10
7秒前
7秒前
7秒前
JoeyCory完成签到,获得积分10
7秒前
青栞发布了新的文献求助10
8秒前
moyu123发布了新的文献求助10
8秒前
xziyou完成签到,获得积分10
9秒前
9秒前
南方周末发布了新的文献求助50
9秒前
思睿观通发布了新的文献求助10
10秒前
11秒前
xziyou发布了新的文献求助10
11秒前
11秒前
Fjun应助Yuelong采纳,获得20
11秒前
活力寒梅发布了新的文献求助10
11秒前
yuan发布了新的文献求助10
12秒前
12秒前
ember完成签到,获得积分10
12秒前
Cassie完成签到,获得积分20
12秒前
哟哟哟发布了新的文献求助10
12秒前
ru完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4290170
求助须知:如何正确求助?哪些是违规求助? 3817391
关于积分的说明 11954517
捐赠科研通 3461171
什么是DOI,文献DOI怎么找? 1898470
邀请新用户注册赠送积分活动 946901
科研通“疑难数据库(出版商)”最低求助积分说明 849970