Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation

计算机科学 理论计算机科学 拉普拉斯矩阵 欧几里德距离 马尔可夫链 图形属性 协同过滤 图形 算法 推荐系统 人工智能 折线图 电压图 机器学习
作者
François Fouss,Alain Pirotte,Jean-Michel Renders,Marco Saerens
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:19 (3): 355-369 被引量:1257
标识
DOI:10.1109/tkde.2007.46
摘要

This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markov-chain model of random walk through the database. More precisely, we compute quantities (the average commute time, the pseudoinverse of the Laplacian matrix of the graph, etc.) that provide similarities between any pair of nodes, having the nice property of increasing when the number of paths connecting those elements increases and when the "length" of paths decreases. It turns out that the square root of the average commute time is a Euclidean distance and that the pseudoinverse of the Laplacian matrix is a kernel matrix (its elements are inner products closely related to commute times). A principal component analysis (PCA) of the graph is introduced for computing the subspace projection of the node vectors in a manner that preserves as much variance as possible in terms of the Euclidean commute-time distance. This graph PCA provides a nice interpretation to the "Fiedler vector," widely used for graph partitioning. The model is evaluated on a collaborative-recommendation task where suggestions are made about which movies people should watch based upon what they watched in the past. Experimental results on the MovieLens database show that the Laplacian-based similarities perform well in comparison with other methods. The model, which nicely fits into the so-called "statistical relational learning" framework, could also be used to compute document or word similarities, and, more generally, it could be applied to machine-learning and pattern-recognition tasks involving a relational database

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笙箫发布了新的文献求助10
1秒前
1秒前
ding应助CQD5201314采纳,获得10
3秒前
4秒前
王嘉尔发布了新的文献求助10
4秒前
孙燕应助ardejiang采纳,获得10
4秒前
认真烨华发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
nixphoe完成签到,获得积分10
8秒前
8秒前
丘比特应助笙箫采纳,获得10
8秒前
汪惜寒完成签到,获得积分0
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
duan123456完成签到,获得积分10
10秒前
11秒前
xu完成签到 ,获得积分10
11秒前
尚影芷发布了新的文献求助10
11秒前
脑洞疼应助王嘉尔采纳,获得10
12秒前
前行的灿发布了新的文献求助10
12秒前
我先睡了发布了新的文献求助10
13秒前
都会完成签到 ,获得积分10
14秒前
14秒前
小星玉米浓汤完成签到,获得积分10
15秒前
RuiXxxxx完成签到,获得积分10
16秒前
16秒前
zhouyu完成签到,获得积分10
16秒前
斯文汲完成签到,获得积分10
16秒前
17秒前
17秒前
完美世界应助诸葛一笑采纳,获得10
17秒前
王嘉尔完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助30
20秒前
20秒前
Owen应助开饭采纳,获得10
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888576
求助须知:如何正确求助?哪些是违规求助? 3430908
关于积分的说明 10771918
捐赠科研通 3156000
什么是DOI,文献DOI怎么找? 1742763
邀请新用户注册赠送积分活动 841364
科研通“疑难数据库(出版商)”最低求助积分说明 785894