Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Haizhu Xie,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:23
标识
DOI:10.1002/jmri.28464
摘要

Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear.To investigate the potential of the proposed attention-based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast-enhanced MRI (DCE-MRI).Retrospective.A total of 941 breast cancer patients who underwent DCE-MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts.A 3.0 T MR scanner, DCE-MRI sequence.A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor-ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan-Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.).Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification.The optimal RCNet model, that is, RCNet-tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet-tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05).DCE-MRI-based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wuyu发布了新的文献求助10
2秒前
yqy关注了科研通微信公众号
3秒前
4秒前
天边完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
6秒前
娴娴超爱笑完成签到,获得积分10
7秒前
dandna发布了新的文献求助10
8秒前
科研小卡拉米完成签到,获得积分10
9秒前
科研通AI5应助钟琪采纳,获得10
11秒前
人间枝头完成签到,获得积分10
11秒前
12秒前
顾矜应助满意的夜柳采纳,获得10
13秒前
希望天下0贩的0应助yj采纳,获得10
13秒前
14秒前
dddd完成签到,获得积分10
15秒前
海迪完成签到,获得积分10
16秒前
姜姜完成签到 ,获得积分10
17秒前
17秒前
背书强完成签到 ,获得积分10
18秒前
chenzao完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
小老板完成签到,获得积分10
21秒前
开心发布了新的文献求助10
22秒前
星辰大海应助KanmenRider采纳,获得10
22秒前
23秒前
科研通AI5应助出水的芙蓉采纳,获得30
23秒前
24秒前
和谐煜祺完成签到,获得积分10
24秒前
yj发布了新的文献求助10
25秒前
Rain完成签到,获得积分10
25秒前
27秒前
Captain发布了新的文献求助10
29秒前
小次之山发布了新的文献求助10
30秒前
30秒前
朱梅琳发布了新的文献求助10
31秒前
31秒前
传奇3应助Qovn采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742