劈形算符
BETA(编程语言)
组合数学
空格(标点符号)
标准概率空间
规范(哲学)
数学
物理
数学物理
数学分析
量子力学
哲学
欧米茄
语言学
认识论
计算机科学
程序设计语言
作者
Ines Ben Omrane,Mourad Ben Slimane,Sadek Gala,Maria Alessandra Ragusa
出处
期刊:AIMS mathematics
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:8 (9): 21208-21220
被引量:4
标识
DOI:10.3934/math.20231081
摘要
<abstract><p>This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution is regular on $ (0, T] $ provided that either the norm $ \left\Vert \pi \right\Vert _{L^{\alpha, \infty }(0, T;L^{\beta, \infty }(\mathbb{R}^{3}))} $ with $ \frac{2}{\alpha }+ \frac{3}{\beta } = 2 $ and $ \frac{3}{2} < \beta < \infty $ or $ \left\Vert \nabla \pi \right\Vert _{L^{\alpha, \infty }(0, T;L^{\beta, \infty }(\mathbb{R} ^{3}))} $ with $ \frac{2}{\alpha }+\frac{3}{\beta } = 3 $ and $ 1 < \beta < \infty $ is sufficiently small.</p></abstract>
科研通智能强力驱动
Strongly Powered by AbleSci AI