Enhancing aspect-based sentiment analysis using a dual-gated graph convolutional network via contextual affective knowledge

计算机科学 图形 情绪分析 人工智能 卷积神经网络 判决 背景(考古学) 机器学习 对偶(语法数字) 理论计算机科学 艺术 古生物学 文学类 生物
作者
Hongtao Liu,Yiming Wu,Qingyu Li,Wanying Lu,Xin Li,Jiahao Wei,Xueyan Liu,Jiangfan Feng
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:553: 126526-126526 被引量:20
标识
DOI:10.1016/j.neucom.2023.126526
摘要

The primary goal of aspect-based sentiment analysis is to identify sentiment polarity concerning the given aspect in a sentence. Recent investigations have demonstrated the superior performance of graph convolutional neural network (GCN) on dependency parsing tree. However, these GCN-based models fail to take the given aspect into account when calculating the hidden node representation vector, as well as lack exploration of contextual commonsense knowledge. On the contrary, the gating mechanism enables the interaction of the context and the given aspect to enhance the impact of the given aspect on the context. Nevertheless, such interactions are frequently inadequate resulting in insufficient extraction of sentiment information. This paper proposes a dual-gated graph convolutional network via contextual affective knowledge (DGGCN) to address these issues. The core idea is to incorporate GCN into the gating mechanism to enhance GCN to fully aggregate node information while strengthening the concentration on the given aspect. Simultaneously, the incorporation of contextual affective knowledge into graph networks can refine the perception of affective features. Experimental findings on five benchmark datasets reveal that our proposed DGGCN surpasses state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
jingjing发布了新的文献求助10
2秒前
大壮发布了新的文献求助10
3秒前
ding应助anaana采纳,获得10
3秒前
斯文败类应助平常无颜采纳,获得10
3秒前
3秒前
Aowu应助沉静的龙猫采纳,获得10
4秒前
NexusExplorer应助果然采纳,获得50
4秒前
4秒前
4秒前
脑洞疼应助哈哈哈采纳,获得10
4秒前
ZhangYunxuan发布了新的文献求助10
4秒前
4秒前
窝窝头完成签到,获得积分10
5秒前
小肚肚完成签到,获得积分10
6秒前
想人陪的新瑶完成签到,获得积分10
6秒前
科目三应助liangyueru采纳,获得10
6秒前
幸福广山发布了新的文献求助10
7秒前
永野芽郁发布了新的文献求助10
7秒前
marg发布了新的文献求助10
7秒前
Koma发布了新的文献求助10
7秒前
8秒前
8秒前
Paris完成签到,获得积分10
9秒前
窝窝头发布了新的文献求助10
9秒前
9秒前
大模型应助克林采纳,获得10
9秒前
cigar完成签到,获得积分10
9秒前
10秒前
shenqueying完成签到,获得积分10
11秒前
jingjing完成签到,获得积分10
11秒前
11秒前
ZhangYunxuan完成签到,获得积分10
11秒前
一本通完成签到,获得积分10
12秒前
Joy完成签到,获得积分10
12秒前
ALDXL发布了新的文献求助10
14秒前
15秒前
开心之王完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846