Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 进化生物学 植物 控制(管理) 计算机安全
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108488-108488 被引量:19
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hqy发布了新的文献求助10
1秒前
1秒前
xissy发布了新的文献求助10
2秒前
3秒前
Victor66685关注了科研通微信公众号
4秒前
5秒前
5秒前
blueblue发布了新的文献求助10
6秒前
飒飒发布了新的文献求助10
6秒前
9秒前
9秒前
11秒前
11秒前
allrubbish发布了新的文献求助10
12秒前
13秒前
无花果应助猪猪hero采纳,获得10
14秒前
14秒前
15秒前
peng发布了新的文献求助10
17秒前
海棠发布了新的文献求助10
17秒前
雪白傲薇发布了新的文献求助10
17秒前
Sarah完成签到,获得积分10
17秒前
Jasper应助远不止这些采纳,获得10
18秒前
dodo应助carl采纳,获得200
18秒前
独特觅儿完成签到,获得积分10
18秒前
白昼完成签到,获得积分10
20秒前
hammer发布了新的文献求助10
21秒前
在水一方应助调皮的曼安采纳,获得10
24秒前
kkkrystal完成签到,获得积分10
24秒前
飒飒完成签到,获得积分10
26秒前
27秒前
smottom应助豪杰采纳,获得10
28秒前
28秒前
Lee发布了新的文献求助10
29秒前
头大完成签到,获得积分10
29秒前
31秒前
32秒前
laoli2022完成签到,获得积分10
33秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050149
求助须知:如何正确求助?哪些是违规求助? 3588112
关于积分的说明 11402180
捐赠科研通 3314597
什么是DOI,文献DOI怎么找? 1823262
邀请新用户注册赠送积分活动 895332
科研通“疑难数据库(出版商)”最低求助积分说明 816731