DecFFD: A Personalized Federated Learning Framework for Cross-Location Fault Diagnosis

监督人 联合学习 计算机科学 趋同(经济学) 一般化 领域(数学分析) 数据挖掘 断层(地质) 数据建模 分布式计算 机器学习 人工智能 数据库 地质学 地震学 数学分析 数学 政治学 法学 经济 经济增长
作者
Dongshang Deng,Wei Zhao,Xuangou Wu,Tao Zhang,Jinde Zheng,Jiawen Kang,Dusit Niyato
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 7082-7091 被引量:1
标识
DOI:10.1109/tii.2024.3353920
摘要

Federated learning has emerged as a promising approach for fault diagnosis, as its ability to learn from decentralized data while preserving client privacy for industry. Yet, it also brings the problem of nonidentically and independently distributed (Non-IID) data, which can result in model convergence delay and performance degradation. Recent research aims to alleviate the problem caused by cross-domain without considering by cross-location. However, it is common in industrial production to have devices across different monitoring locations. Furthermore, experimental results indicate that the diagnostic models' performance of the latest techniques is significantly affected. To address the cross-location Non-IID data problem, we propose DecFFD, a personalized federated fault diagnosis framework that decouples global and personalized features. In DecFFD, we design a reconstructor for each client that acts as a supervisor and decoupler to disentangle global and personalized features. We then present a client alignment algorithm to eliminate the differences in global features among clients. In addition, we provide a theoretical analysis of fairness and generalization capability, offering a theoretical guarantee for model convergence. Finally, extensive experiments are conducted on two real-world datasets. Experimental results show that the accuracy of DecFFD outperforms the accuracy that of the state-of-the-art approach by 14.67% and converges at a faster rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ltt123完成签到 ,获得积分10
刚刚
李荣航发布了新的文献求助10
1秒前
ll完成签到,获得积分10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助自信的紫夏采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
3秒前
甜甜玫瑰应助Osii采纳,获得10
3秒前
Hello应助远方采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
Sun完成签到,获得积分10
4秒前
孙燕应助xxxxxxxx采纳,获得30
5秒前
Ava应助吴彦祖采纳,获得10
5秒前
jlwang发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
冰魂应助莫西莫西采纳,获得20
7秒前
7秒前
Mryuan完成签到,获得积分10
7秒前
1223完成签到,获得积分10
7秒前
共享精神应助诗轩采纳,获得10
8秒前
222发布了新的文献求助10
8秒前
cherish发布了新的文献求助10
8秒前
冰魂应助harry采纳,获得10
9秒前
10秒前
CRY发布了新的文献求助10
10秒前
香蕉惜儿发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
Orange应助清澈的愚蠢采纳,获得10
13秒前
毛77发布了新的文献求助10
13秒前
水植完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635