清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Comparative Study of Traditional and Transformer-based Deep Learning Models for Multi-Class Eye Movement Recognition Using Collected Dataset

计算机科学 深度学习 眼球运动 人工智能 内存占用 机器学习 计算机视觉 操作系统
作者
Ali A. Masaoodi,Hawraa Hassan Abbas,Haider Ismael Shahadi
标识
DOI:10.1109/icamimia60881.2023.10427563
摘要

The study of eye movement recognition has emerged as a pivotal focus, particularly in fields such as human-computer interaction, healthcare diagnostics, and adaptive technologies, due to its potential to enhance lives, especially for those with physical impairments. However, employing deep learning models that utilize non-intrusive cameras for recognizing and classifying eye movements has been impeded by issues that stem from environmental, physiological, and technical factors. These encompass unpredictable lighting, noise, head movements, and inherent human differences. In response to these challenges, this study presents an in-depth comparison between the performance of the ViT vit-base-patch16-224-in21k model and traditional deep learning models including ResNet18, and AlexNet, all of which were adapted and optimized for our collected dataset that consists of diverse eye movements from eight participants, captured under varied environmental and physiological conditions. The evaluation criteria included accuracy, interference time, and memory footprint. The findings indicate that the ViT model delivers a balanced performance, effectively addressing the intricacies of the multi-class eye movement dataset while maintaining interference time efficiency. This study underscores the importance of considering both performance and computational demands in choosing appropriate models for eye movement recognition and offers insights to guide future research. ViT and ResNet18 were about equally accurate but ViT was faster, while ResNet18 used less memory; AlexNet was less accurate and its speed and memory use were in between the two. We find that ViT showed remarkable efficiency with an average of 0.0588 seconds per image which makes it promising for applications that rely on the interference time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy0824完成签到 ,获得积分10
17秒前
18秒前
披着羊皮的狼完成签到 ,获得积分10
18秒前
21秒前
天玄发布了新的文献求助10
23秒前
29秒前
无悔完成签到 ,获得积分10
35秒前
迷茫的一代完成签到,获得积分10
38秒前
41秒前
天玄发布了新的文献求助10
47秒前
58秒前
1分钟前
1分钟前
wzbc完成签到,获得积分10
1分钟前
1分钟前
1分钟前
南寅完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分0
4分钟前
4分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
走啊走完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
cheryjay发布了新的文献求助10
5分钟前
wen完成签到,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
5分钟前
紫熊完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624